Contact

Baenitz, Michael
Michael Baenitz
Group leader
Phone: +49 351 4646-3217
Fax: +49 351 4646-3232

NMR as a local probe for ferromagnetic quantum criticality in Fe- based systems

M. Majumder,  P. Khuntia,  A. Gippius1,  A. Strydom2, C. Petrovic3, H. Yasuoka,  M. Brando,  H. Tjeng, F. Steglich, Y. Grin and M. Baenitz

<p style="text-align: justify;">Fig. 1 (a)&nbsp; <sup>27</sup>(1/T<sub>1</sub>T) versus T for YbFe<sub>2</sub>Al<sub>10</sub> in various applied magnetic fields. The solid line represents a calculation base on a model which includes a 3d- and a 4f &ndash; component. Fig.1 (b) shows the linear relation between the square root of the 3d part of the SLRR and the bulk susceptility and c&nbsp; and Fig. 1 (d) displays the field dependence of the SLRR at T = 2 K. Fig. 1 (c) gives the fluctuation time of the intermediate Yb<sup>3-</sup><sup>d</sup> ion [9].</p> Zoom Image

Fig. 1 (a)  27(1/T1T) versus T for YbFe2Al10 in various applied magnetic fields. The solid line represents a calculation base on a model which includes a 3d- and a 4f – component. Fig.1 (b) shows the linear relation between the square root of the 3d part of the SLRR and the bulk susceptility and c  and Fig. 1 (d) displays the field dependence of the SLRR at T = 2 K. Fig. 1 (c) gives the fluctuation time of the intermediate Yb3-d ion [9].

[less]
<p style="text-align: justify;">Fig. 1 Temperature dependence of <sup>71</sup>(1/T<sub>1</sub>T) measured at the Ga2- site of FeGa<sub>3-x</sub>Ge<sub>x</sub> for various Ge concentrations x. &nbsp;The solid lines correspond to a two component model with a (T-independent) conduction electron part and a (T-dependent) 3d-spin part. The dashed lines indicate the power laws of the bare spin part. Fig.1 (b) shows the T<sup>-4/3</sup> power law in&nbsp; <sup>71</sup>(1/T<sub>1</sub>T)<sub>3d</sub> for the critical sample and Fig. 1 (c) shows the <sup>71</sup>(1/T<sub>1</sub>T)<sub>3d</sub>&nbsp;proportional to bulk susceptility&nbsp;relation for the ordered x=0.2 sample for T &gt; T<sub>C</sub> [13].</p> Zoom Image

Fig. 1 Temperature dependence of 71(1/T1T) measured at the Ga2- site of FeGa3-xGex for various Ge concentrations x.  The solid lines correspond to a two component model with a (T-independent) conduction electron part and a (T-dependent) 3d-spin part. The dashed lines indicate the power laws of the bare spin part. Fig.1 (b) shows the T-4/3 power law in  71(1/T1T)3d for the critical sample and Fig. 1 (c) shows the 71(1/T1T)3d proportional to bulk susceptility relation for the ordered x=0.2 sample for T > TC [13].

[less]

1 Physics Department, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa

2 Department of Physics, Moscow State University,119991, Moscow, Russia

3 Condensed Matter Physics, Brookhaven National Laboratory, Upton, NY 11973-5000, New York, USA

 

References:

[1] E. M. Brüning, C. Krellner, M. Baenitz, A. Jesche, F. Steglich, and C. Geibel, Phys. Rev. Lett. 101, 117206 (2008).

 

[2] S. Lausberg, J. Spehling, A. Steppke, A. Jesche, H. Luetkens, A. Amato, C. Baines, C. Krellner, M. Brando, C. Geibel, H.-H. Klauss, and F. Steglich Phys. Rev. Lett. 109, 216402 (2012).

 

[3] A. Steppke, R. Küchler, S. Lausberg, E. Lengyel, L. Steinke, R. Borth, T. Lühmann, C. Krellner, M. Nicklas, C. Geibel, F. Steglich, M. Brando. Science 339, 933 (2013).

 

[4] R. Sarkar, P. Khuntia, C. Krellner, C. Geibel, F. Steglich, and M. Baenitz, Phys. Rev. B 85, 140409(R) (2012).

 

[5] Y. Ihara, T. Hattori, K. Ishida, Y. Nakai, E. Osaki, K. Deguchi, N. K. Sato, and I. Satoh, Phys. Rev. Lett. 105, 206403 (2010).

 

[6] Y. Horie, S. Kawashima, Y. Yamada, G. Obara, and T.Nakamura, J. Phys.: Conf. Ser. 200, 032078 (2010).

 

[7] M. Brando, D. Belitz, F. M. Grosche, T. R. Kirkpatrick, arXiv: 1502.02898 (2015). submitted to „Review of modern Physics“

 

[8] P. Khuntia, A. M. Strydom, L. S. Wu, M. C. Aronson, F. Steglich, and M. Baenitz, Phys. Rev. B 86, 220401(R) (2012).

 

[9] P. Khuntia, P. Peratheepan, A. M. Strydom, Y. Utsumi, K.-T. Ko, K.-D. Tsuei, L.H. Tjeng, F. Steglich, and M. Baenitz, Phys. Rev. Lett. 113, 216403 (2014).

 

[10] A. A. Gippius , M. Baenitz, K. S. Okhotnikov, S. Johnsen, B. Iversen, A. V. Shevelkov, Applied Magnetic Resonance 45, 1237 (2014).

 

[11] A. A. Gippius, V. Yu. Verchenko, A. V. Tkachev, N. E. Gervits, C. S. Lue, A. A. Tsirlin, N. Büttgen, W. Krätschmer, M. Baenitz, M. Shatruk, and A. V. Shevelkov, Phys. Rev. B 89, 104426 (2014).

 

[12] M. Wagner-Reetz, D. Kasinathan, W. Schnelle, R. Cardoso-Gil, H. Rosner, and Y. Grin, Phys. Rev. B 90, 195206 (2014).

 

[13] M. Majumder, M. Wagner-Reetz, R. Cardoso-Gil, P. Gille, F. Steglich, Y. Grin, and M. Baenitz, submitted to Phys. Rev. Lett. (2015) / arXiv:1510.01974.

 

[14] D.J. Singh, D. Parker Sci. Rep. 3 3517 DOI:10.1038/srep03517 (2013)

 
loading content