Many quantum particles

October 24, 2018

Quantum materials have attracted much interest during the past decades. Putting a large number of identical quantum particles together induces a wide range of new and often unexpected physical phenomena.  Due to their quantum nature, the interactions of these particles lead to the emergence of new states, new phases, new excitations, new physical laws and principles.  This is particularly true for correlated electrons in solids, being at the heart of our theoretical research. 

Currently, the state of research is shifting towards “controlling” these exotic phase transitions with a long-term goal of applying them in future new-principle electronics. Our in-house experimental colleagues are providing us with new ideas in doing so. They are able to engineer new states by creating devices working in the hydrodynamic/nonequilibrium regime, inducing superconductivity and magnetism by applying external fields or strains, and even creating new materials. 

We focus on many-body effects, ordering phenomena, and collective excitations in strongly correlated electron systems in and out of equilibrium. Of special interest are nonequilibrium states induced by external electric fields in nonlinear devices. We have proposed how to obtain Floquet topological states, nonequilibrium Mott transitions and a negative temperature state, while some of them are already experimentally realized. It is our research target to find even more of such exotic quantum phenomena. In addition to charge degrees of freedom, we are interested in magnetic ordering and spin dynamics due to their importance in information storage and processing. Characteristic features can also be seen in the temperature and field dependence of thermodynamic quantities like heat capacity, magnetic susceptibility, magnetization, and the magnetocaloric effect. 

To investigate these effects, we develop and use various theoretical methods, including nonequilibrium many-body perturbation theory, and the finite temperature Lanczos algorithm. Our goal is to derive a detailed understanding of the materials we are exploring.  To this end we work closely together with our experimental colleagues as well as with theoretical and experimental groups worldwide.  A strong overlap and intense cooperation also exists with the theorists from our departments as well as with the neighboring Max Planck Institute for the Physics of Complex Systems.

Further readings: 

Figures:

Go to Editor View