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Abstract

Different magnetic ground states of structurally similar compounds bearing edge-shared CuO2 chains are explained

within a common approach in terms of frustrated single-chain couplings and antiferromagnetic interchain exchange.

r 2004 Elsevier B.V. All rights reserved.
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Undoped edge-shared CuO2 chain bearing compounds

exhibit a surprisingly large variety of magnetic ground

states (GS). Thus, near 9K the prototypical Li2CuO2

shows a transition to a (commensurate) Néel state

dominated by antiferromagnetic (afm) interchain cou-

pling but accompanied also by a ferromagnetic (fm) in-

chain ordering, whereas the closely related LiCu2O2 [1,2]

shows a transition to an incommensurate (IC) state along

the chain direction b below about 23K, which probably

represents a long sought spin-1
2
helix. Its details are still

under debate, in particular two alternative frustrated

models have been proposed and employed in the analysis

of experimental data: (i) the ‘‘afm’’-double chain (DC) or

dimer liquid model [2–4]; and (ii) the fm–afm single-

chain model [1]. By neutron scattering, Masuda et al.

observed a corresponding propagation vector z ¼ 0:1724
(in units of the reciprocal lattice vector 2p=b in chain

direction) and nonequivalent Bragg reflexes near integer
- see front matter r 2004 Elsevier B.V. All rights reserve
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values k � z similar to z ¼ 1
8
; l ¼ l0 �

1
8
; l0 ¼ 0; 1

reported for SiCuO3 below 8K [5]. Therefore, we suggest

a helix also for SiCuO3: A similar IC state has been

proposed for Rb2Cu2Mo3O12 based on magnetic sus-

ceptibility data [6]. Finally, CuGeO3 with the afm nearest

(nn) neighbor exchange shows a spin-Peierls GS sup-

ported by frustrating afm next-nearest neighbor (nnn)

coupling. This disparity results from a complex interplay

between the actual internal anisotropy of in-chain and

off-chain transfer integrals governed by the Cu–O–Cu

bond angle g�90�; the spin-anisotropy, the strength of

the crystal field affected by the position and the charge of

the cations and the interchain coupling. Here, we will

focus on Li2CuO2 and LiCu2O2; adopting in the analysis

the 1D isotropic frustrated spin-1
2

J1–J2 Heisenberg

model with nn and nnn exchange.
1. Consequences of frustration in CuO2 chains

With an afm nnn-coupling J240 along a single CuO2

chain, one is left with a frustration problem irrespective
d.
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of the sign of J1: For Li2CuO2; many experimental data

are available. We fitted an extended Hubbard model to

describe its optical conductivity and O 1 s X-ray-

absorption data. Then the lowest multiplet states (total

spin S ¼ 0; 1; 2) of periodic CunO2n clusters with n ¼ 3–6

were mapped onto J1–J2 Heisenberg rings with 3–6 sites

to extract the exchange integrals. With respect to the

small Cu–O–Cu bond angle g � 94� there is consensus

about the fm nature of J1 for Li2CuO2 [7]. First

principle LDA calculations [1] (see Table 1) and fits of

the magnetic susceptibility result in J1 � �8 to �10meV

for both compounds (for refinements for Li2CuO2; see
below). Furthermore, there is a significant afm nnn

exchange integral due to a non-negligible nnn transfer

integral t2y leading to a ¼ J2=J1 � �0:7: However, such

a large value of a clearly exceeds the well-known critical

value of a1Dc ¼ � 1
4
for a spiral instability (independent of

the actual spin value). This seemingly contradicts with

experimental neutron scattering data, which show fm in-

chain order can be resolved taking into account the

specific interchain coupling in Li2CuO2 (see Section 2).

Another quantity of interest derived from experimen-

tal data is the Curie–Weiss temperature obtained from

high-temperature susceptibility data according to

wðTÞ / 1=ðT �YCWÞ (see also Fig. 2).
b
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Fig. 1. The formal DC structure of LiCu2O2: Crystal structure
with a DC along the bðyÞ-axis in the centre (left panel). Large �

denote Cu sites. Projected bi-layer onto the ða; bÞ plane with two

DCs (right panel). E and  denote the magnetically active

Cu(2+) sites in different planes. Main exchange paths are

denoted by off-chain lines.
2. Aspects of the interchain coupling

The interchain coupling is very sensitive to the chain

arrangement in a real solid. In Li2CuO2 each CuO2

chain is surrounded by four parallel nn chains shifted by

half a lattice constant. Furthermore, the second

neighbor transfer J? is of the same order as the first

neighbor one J 0
?: Thus, the effective number of nearest

neighbors at surrounding chains is zeff ¼ 16! Treating
the interchain coupling in mean-field theory and the in-

chain coupling within the above-mentioned cluster

approach one arrives for the high-temperature wðTÞ at

a simple Curie–Weiss law with

Y3D
CW � Y1D

CW �
zeffJ?

4
, (1)
Table 1

LDA hopping t and exchange integrals J in milli-electron-volt for U ¼

of Fig. 1. The total exchange integrals Jeff consist of differently calcu

and Jfm (direct exchange) from Wannier-functions, respectively. The v

2.46, respectively) [1]

y 2y

jtj 64 109

Jafm 5.5 (4.1) 15.8 (11.9)

Jfm �13.6 (�17.9) �1.4 (1.8)

Jeff �8.1 (�13.9) 14.4 (10.1)
withY1D
CWðaÞ derived from numerically calculated 1=wðTÞ

curves with 4jJ1joTo5jJ1j: For results see Fig. 2.

From Fig. 3, the observed Néel transition, LDA derived

interchain couplings, and Eq. (1) for Li2CuO2 a tiny fm

Y1D
CW can be conjectured (vanishing near a ¼ 0.71) [8].

Hence, the observed afm 3D value � 30–40K is ascribed

mainly to the afm interchain couplings. In contrast, for

LiCu2O2 the value of Y3D
CW is determined both by the

stronger afm nnn in-chain coupling J2 and the weaker

afm interchain coupling. In this bi-layer chain com-

pound there are two nn chains within a single plane (see

Fig. 1) and two nn chains within an adjacent plane in the

bilayer. The so-called double-chains (DC) belong to

adjacent bilayers. According to our LDA-calculation [1]

both couplings are weak (compared with the main in-

chain couplings) being of the same order, i.e. 0.5–1meV.

Thus, here zeff�3–4 is significantly smaller than in

Li2CuO2:
To illustrate another specific interchain coupling

feature in Li2CuO2; we consider the renormalized

critical a3Dc : In contrast to the pitch angle [9], ac is

hardly affected by quantum (spin-1
2
) effects like in the 1D

and 2D cases [10,11] and we estimate the interchain
3 and 4 eV (in brackets); notation according to the right panel

lated afm and fm contributions: Jafm ¼ 4t2=U (superexchange)

alue of U influences the Jfm’s via screening factors (here 3.3 and

x ~x xy

73 18 25

7.1 (5.3) 0.4 (0.3) 0.8 (0.6)

�1.4 (1.8) — —

5.7 (3.5) 0.4 (0.3) 0.8 (0.6)
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effect on it within a classical spin model:

a3Dc ¼ a1DC ð1þ bþ 9b0 þ 25b00 þ � � �Þ, (2)

where b ¼ �J?=J1; b0 ¼ �J 0
?=J1; and b ¼ �J 00

?=J1;
denote the 1st, 2nd, 3rd, respectively, exchange to a

corresponding neighbor on an adjacent chain. The afm

interchain J? � J 0
? � 1–1.5meV is estimated from our

LDA interchain transfer integrals t?; via J? � 4t2?=U ;
where U � 4 eV denotes the effective on-site Coulomb

repulsion within a single-band model. Thus, one arrives

at a strong enhancement of ac by a factor of 3. As a

result, our empirically and theoretically estimated single-

chain frustration ratios a � �0:7 are slightly above the

expected renormalized a3Dc � �0:7520:8 in accord with

the absence of a helix in Li2CuO2: In addition, the
fm

afm
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Fig. 2. The single-chain Curie–Weiss temperatureY1D
CW vs. nnn-

exchange afm coupling (in units of fm nn-exchange) from the

calculated wðTÞ of frustrated spin-1
2
Heisenberg chains with

periodic boundary conditions (PBC) with N ¼ 12; 16 sites and a

1=N extrapolation to N ¼ 1: The dashed–dotted line denotes

the behavior of decoupled afm chains approached asymptoti-

cally in the J2bjJ1j limit.
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Fig. 3. Susceptibility wðTÞ for spin-1
2
fm–afm Heisenberg rings with N

compared with experiments (dashed (left panel), dotted and dashed–do

microscopic ones from mapping low-lying magnetic excitations of

spectroscopic data) onto excitations of the Heisenberg model.
ignored spin anisotropy further stabilizes the fm in-chain

order. Our approach might explain the large fluctuations

seen in various experiments due to the vicinity of the

competing spiral phase/Lifshits point and not by strong

1D fluctuations as proposed [12].

In LiCu2O2; the interchain coupling (mainly within a

DC) only weakly affects the critical value a3Dc : Here, the

in-phase arrangement of chains slightly reduces the

effective fm nn J1: Only the weak coupling between

chains in adjacent planes (shifted by b/2 along the b-axis,

see Fig. 1) as in Li2CuO2; causes a renormalization of

a3Dc as in Eq. (2). However, in total its effect is reduced

by a factor �8 compared with Li2CuO2:
3. Discussion and comparison with experiment

From cluster studies, we derived for frustrating afm

Jnnn40 and a ¼ �1:6 an afm YCW;1D � �71K: With

J?�10K [1] one arrives at the reported values of YCW

� �80 to �90K [3,13]. However, from the susceptibility

wðTÞ data shown in Fig. 3 we obtained a somewhat

smaller Y3D
CW ¼ �37K (Hkða; bÞ) and �47ðHkcÞ; respec-

tively, which together with the global fit of wðTÞ results

now in somewhat reduced values for a � �1 andY1D
CW ¼

�19K: Then the effective interchain coupling amounts

to 18K (28K) or 1.55meV (2.4meV) in accord with our

LDA estimate. Concerning the susceptibility fits we note

that the low-T behavior is still affected by finite size

effects. Interchain coupling, spin anisotropy, and a

possible T-dependence of the g factor [3] approaching

the spiral transition should be taken into account to

further improve the fit. For the closely related Li2CuO2

(a ¼ �0:7; zeff ¼ 16; and a fm YCW;1D � þ2K from the

theoretical wðTÞ (see Figs. 2 and 3)), adding the above-

mentioned interchain couplings our model yields YCW �

�38K in accord with the experiment. With wðTÞ from

Refs. [7,12] one would arrive at g � 2.04–2.1.
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¼ 16 sites (full (both panels) and bold dashed lines (right panel)

tted lines (right panel)). The empirical Heisenberg J’s agree with

the 5-band Cu 3d O 2p extended Hubbard model (fitted to
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To conclude, we have shown that the frustrated

fm–afm single-chain model supplemented with LDA

derived interchain coupling reveals a proper description

of two typical edge-shared CuO2 chain compounds.

Although both materials exhibit comparable single-

chain exchange couplings, J1 ¼ �8:2 and �9:5meV;
respectively, for nn’s and J2 ¼ 8:2 and 6.6meV for

nnn’s, respectively, Li2CuO2 is found to be close to a

fm–afm helical ground state, still prevented by strong

specifical, interchain coupling, whereas the long sought

‘‘fm’’ spin-1
2
helix is realized in LiCu2O2:
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4. Note added in proof

Recently, for two closely related edge-shared CuO2

chain based compounds spirals of the same single chain
fm-afm frustration origin as discussed above have been

discovered:

LiVCuO4 (B.J. Gibson et al., Physica B 354 (2004) e253) and

NaCu2O2; isomorphic with LiCu2O2 (L. Capogna et al. cond-

mat/0411753). Concerning the present state of the debate on

LiCu2O2; see also the comment S.-L. Drechsler et al. cond-mat/

0411418 and the reply by T. Masuda et al. cond-mat/0412245

(Phys. Rev. Lett (2005) in press) as well as their extended

preprint cond-mat/0412625.
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