

Available online at www.sciencedirect.com

Journal of Magnetism and Magnetic Materials 290-291 (2005) 345-348

www.elsevier.com/locate/jmmm

Spiral vs. ferromagnetic in-chain order in edge-shared cuprates

S.-L. Drechsler^{a,*}, J. Richter^b, J. Málek^c, A.S. Moskvin^d, R. Klingeler^a, H. Rosner^{a,1}

^aLeibniz-Institut f. Festkörper-und Werkstoffforschung IFW Dresden, P.O. Box 270016, Dresden 01171, Germany

^bInstitut für Theoretische Physik, Universität Magdeburg, Magdeburg, Germany

^cInstitute of Physics, ASCR, Prague, Czech Republic ^dUral State University, Ekaterinburg, Russia Federation

Available online 15 December 2004

Abstract

Different magnetic ground states of structurally similar compounds bearing edge-shared CuO_2 chains are explained within a common approach in terms of frustrated single-chain couplings and antiferromagnetic interchain exchange. \bigcirc 2004 Elsevier B.V. All rights reserved.

PACS: 75.10.Pq; 75.25.+z; 75.30.Kz

Keywords: Edge-shared cuprate chain; Quantum helix

Undoped edge-shared CuO2 chain bearing compounds exhibit a surprisingly large variety of magnetic ground states (GS). Thus, near 9K the prototypical Li₂CuO₂ shows a transition to a (commensurate) Néel state dominated by antiferromagnetic (afm) interchain coupling but accompanied also by a ferromagnetic (fm) inchain ordering, whereas the closely related $LiCu_2O_2$ [1,2] shows a transition to an incommensurate (IC) state along the chain direction b below about 23 K, which probably represents a long sought spin- $\frac{1}{2}$ helix. Its details are still under debate, in particular two alternative frustrated models have been proposed and employed in the analysis of experimental data: (i) the "afm"-double chain (DC) or dimer liquid model [2-4]; and (ii) the fm-afm singlechain model [1]. By neutron scattering, Masuda et al. observed a corresponding propagation vector $\zeta = 0.1724$ (in units of the reciprocal lattice vector $2\pi/b$ in chain direction) and nonequivalent Bragg reflexes near integer

values $k \pm \zeta$ similar to $\zeta = \frac{1}{8}$, $l = l_0 \pm \frac{1}{8}$, $l_0 = 0, 1$ reported for SiCuO₃ below 8 K [5]. Therefore, we suggest a helix also for SiCuO₃. A similar IC state has been proposed for Rb₂Cu₂Mo₃O₁₂ based on magnetic susceptibility data [6]. Finally, CuGeO₃ with the afm nearest (nn) neighbor exchange shows a spin-Peierls GS supported by frustrating afm next-nearest neighbor (nnn) coupling. This disparity results from a complex interplay between the actual internal anisotropy of in-chain and off-chain transfer integrals governed by the Cu-O-Cu bond angle $\gamma \sim 90^{\circ}$, the spin-anisotropy, the strength of the crystal field affected by the position and the charge of the cations and the interchain coupling. Here, we will focus on Li₂CuO₂ and LiCu₂O₂, adopting in the analysis the 1D isotropic frustrated spin- $\frac{1}{2}$ J_1 - J_2 Heisenberg model with nn and nnn exchange.

1. Consequences of frustration in CuO₂ chains

With an afm nnn-coupling $J_2 > 0$ along a single CuO₂ chain, one is left with a frustration problem irrespective

^{*}Corresponding author. Tel./fax: +493514659384(490).

E-mail address: drechsler@ifw-dresden.de (S.-L. Drechsler). ¹MPI f. Chem. Physik fester Stoffe Dresden, Germany.

of the sign of J_1 . For Li₂CuO₂, many experimental data are available. We fitted an extended Hubbard model to describe its optical conductivity and O 1s X-rayabsorption data. Then the lowest multiplet states (total spin S = 0, 1, 2) of periodic Cu_nO_{2n} clusters with n = 3-6were mapped onto J_1 – J_2 Heisenberg rings with 3–6 sites to extract the exchange integrals. With respect to the small Cu–O–Cu bond angle $\gamma \approx 94^{\circ}$ there is consensus about the fm nature of J_1 for Li₂CuO₂ [7]. First principle LDA calculations [1] (see Table 1) and fits of the magnetic susceptibility result in $J_1 \approx -8$ to -10 meV for both compounds (for refinements for Li₂CuO₂, see below). Furthermore, there is a significant afm nnn exchange integral due to a non-negligible nnn transfer integral $t_{2\nu}$ leading to $\alpha = J_2/J_1 \sim -0.7$. However, such a large value of α clearly exceeds the well-known critical value of $\alpha_c^{1D} = -\frac{1}{4}$ for a spiral instability (independent of the actual spin value). This seemingly contradicts with experimental neutron scattering data, which show fm inchain order can be resolved taking into account the specific interchain coupling in Li_2CuO_2 (see Section 2).

Another quantity of interest derived from experimental data is the Curie–Weiss temperature obtained from high-temperature susceptibility data according to $\chi(T) \propto 1/(T - \Theta_{CW})$ (see also Fig. 2).

2. Aspects of the interchain coupling

The interchain coupling is very sensitive to the chain arrangement in a real solid. In Li₂CuO₂ each CuO₂ chain is surrounded by four parallel nn chains shifted by half a lattice constant. Furthermore, the second neighbor transfer J_{\perp} is of the same order as the first neighbor one J'_{\perp} . Thus, the effective number of nearest neighbors at surrounding chains is $z_{\text{eff}} = 16$! Treating the interchain coupling in mean-field theory and the inchain coupling within the above-mentioned cluster approach one arrives for the high-temperature $\chi(T)$ at a simple Curie–Weiss law with

$$\Theta_{\rm CW}^{\rm 3D} \approx \Theta_{\rm CW}^{\rm 1D} - \frac{z_{\rm eff} J_{\perp}}{4},\tag{1}$$

Table 1

with $\Theta_{CW}^{1D}(\alpha)$ derived from numerically calculated $1/\chi(T)$ curves with $4|J_1| < T < 5|J_1|$. For results see Fig. 2. From Fig. 3, the observed Néel transition, LDA derived interchain couplings, and Eq. (1) for Li₂CuO₂ a tiny fm Θ_{CW}^{1D} can be conjectured (vanishing near $\alpha = 0.71$) [8]. Hence, the observed afm 3D value \approx 30–40 K is ascribed mainly to the afm interchain couplings. In contrast, for LiCu₂O₂ the value of Θ_{CW}^{3D} is determined both by the stronger afm nnn in-chain coupling J_2 and the weaker afm interchain coupling. In this bi-layer chain compound there are two nn chains within a single plane (see Fig. 1) and two nn chains within an adjacent plane in the bilayer. The so-called double-chains (DC) belong to adjacent bilayers. According to our LDA-calculation [1] both couplings are weak (compared with the main inchain couplings) being of the same order, i.e. 0.5-1 meV. Thus, here $z_{\rm eff} \sim 3-4$ is significantly smaller than in Li₂CuO₂.

To illustrate another specific interchain coupling feature in Li₂CuO₂, we consider the renormalized critical α_c^{3D} . In contrast to the pitch angle [9], α_c is hardly affected by quantum (spin- $\frac{1}{2}$) effects like in the 1D and 2D cases [10,11] and we estimate the interchain

Fig. 1. The formal DC structure of LiCu₂O₂. Crystal structure with a DC along the b(y)-axis in the centre (left panel). Large \circ denote Cu sites. Projected bi-layer onto the (a, b) plane with two DCs (right panel). \blacklozenge and \bullet denote the magnetically active Cu(2+) sites in different planes. Main exchange paths are denoted by off-chain lines.

LDA hopping t and exchange integrals J in milli-electron-volt for $U = 3$ and 4 eV (in brackets); notation according to the right panel
of Fig. 1. The total exchange integrals J^{eff} consist of differently calculated afm and fm contributions: $J^{\text{afm}} = 4t^2/U$ (superexchange)
and J ^{fm} (direct exchange) from Wannier-functions, respectively. The value of U influences the J ^{fm} 's via screening factors (here 3.3 and
2.46, respectively) [1]

	у	2 <i>y</i>	x	ĩ	xy
<i>t</i>	64	109	73	18	25
$J^{ m afm}$	5.5 (4.1)	15.8 (11.9)	7.1 (5.3)	0.4 (0.3)	0.8 (0.6)
$J^{ m fm}$	-13.6 (-17.9)	-1.4(1.8)	-1.4(1.8)	_	_
$J^{ m eff}$	-8.1 (-13.9)	14.4 (10.1)	5.7 (3.5)	0.4 (0.3)	0.8 (0.6)

effect on it within a classical spin model:

$$\alpha_{\rm c}^{\rm 3D} = \alpha_{\rm C}^{\rm 1D} (1 + \beta + 9\beta' + 25\beta'' + \cdots),$$
 (2)

where $\beta = -J_{\perp}/J_1$, $\beta' = -J'_{\perp}/J_1$, and $\beta = -J''_{\perp}/J_1$, denote the 1st, 2nd, 3rd, respectively, exchange to a corresponding neighbor on an adjacent chain. The afm interchain $J_{\perp} \sim J'_{\perp} \approx 1\text{--}1.5 \text{ meV}$ is estimated from our LDA interchain transfer integrals t_{\perp} , via $J_{\perp} \approx 4t_{\perp}^2/U$, where $U \sim 4 \text{ eV}$ denotes the effective on-site Coulomb repulsion within a single-band model. Thus, one arrives at a strong enhancement of α_c by a factor of 3. As a result, our empirically and theoretically estimated singlechain frustration ratios $\alpha \approx -0.7$ are slightly above the expected renormalized $\alpha_c^{3D} \approx -0.75-0.8$ in accord with the absence of a helix in Li₂CuO₂. In addition, the

Fig. 2. The single-chain Curie–Weiss temperature Θ_{CW}^{1D} vs. nnnexchange afm coupling (in units of fm nn-exchange) from the calculated $\chi(T)$ of frustrated spin $\frac{1}{2}$ Heisenberg chains with periodic boundary conditions (PBC) with N = 12, 16 sites and a 1/N extrapolation to $N = \infty$. The dashed–dotted line denotes the behavior of decoupled afm chains approached asymptotically in the $J_2 \ge |J_1|$ limit.

ignored spin anisotropy further stabilizes the fm in-chain order. Our approach might explain the large fluctuations seen in various experiments due to the vicinity of the competing spiral phase/Lifshits point and not by strong 1D fluctuations as proposed [12].

In LiCu₂O₂, the interchain coupling (mainly within a DC) only weakly affects the critical value α_c^{3D} . Here, the in-phase arrangement of chains slightly reduces the effective fm nn J_1 . Only the weak coupling between chains in adjacent planes (shifted by b/2 along the *b*-axis, see Fig. 1) as in Li₂CuO₂, causes a renormalization of α_c^{3D} as in Eq. (2). However, in total its effect is reduced by a factor ~8 compared with Li₂CuO₂.

3. Discussion and comparison with experiment

From cluster studies, we derived for frustrating afm $J_{\rm nnn} > 0$ and $\alpha = -1.6$ an afm $\Theta_{\rm CW,1D} \approx -71$ K. With $J_{\perp} \sim 10 \,\mathrm{K}$ [1] one arrives at the reported values of Θ_{CW} ≈ -80 to -90 K [3,13]. However, from the susceptibility $\chi(T)$ data shown in Fig. 3 we obtained a somewhat smaller $\Theta_{CW}^{3D} = -37 \text{ K} (\mathbf{H} || (a, b)) \text{ and } -47(\mathbf{H} || c), \text{ respec-}$ tively, which together with the global fit of $\chi(T)$ results now in somewhat reduced values for $\alpha \approx -1$ and $\Theta_{CW}^{1D} =$ -19 K. Then the effective interchain coupling amounts to 18 K (28 K) or 1.55 meV (2.4 meV) in accord with our LDA estimate. Concerning the susceptibility fits we note that the low-T behavior is still affected by finite size effects. Interchain coupling, spin anisotropy, and a possible T-dependence of the g factor [3] approaching the spiral transition should be taken into account to further improve the fit. For the closely related Li₂CuO₂ $(\alpha = -0.7, z_{\text{eff}} = 16, \text{ and a fm } \Theta_{\text{CW,1D}} \approx +2 \text{ K from the}$ theoretical $\chi(T)$ (see Figs. 2 and 3)), adding the abovementioned interchain couplings our model yields $\Theta_{\rm CW} \sim$ -38 K in accord with the experiment. With $\gamma(T)$ from Refs. [7,12] one would arrive at $g \approx 2.04-2.1$.

Fig. 3. Susceptibility $\chi(T)$ for spin- $\frac{1}{2}$ fm-afm Heisenberg rings with N = 16 sites (full (both panels) and bold dashed lines (right panel) compared with experiments (dashed (left panel), dotted and dashed-dotted lines (right panel)). The empirical Heisenberg *J*'s agree with microscopic ones from mapping low-lying magnetic excitations of the 5-band Cu 3d O 2p extended Hubbard model (fitted to spectroscopic data) onto excitations of the Heisenberg model.

To conclude, we have shown that the frustrated fm-afm single-chain model supplemented with LDA derived interchain coupling reveals a proper description of two typical edge-shared CuO₂ chain compounds. Although both materials exhibit comparable single-chain exchange couplings, $J_1 = -8.2$ and -9.5 meV, respectively, for nn's and $J_2 = 8.2$ and 6.6 meV for nnn's, respectively, Li₂CuO₂ is found to be close to a fm-afm helical ground state, still prevented by strong specifical, interchain coupling, whereas the long sought "fm" spin- $\frac{1}{2}$ helix is realized in LiCu₂O₂.

Acknowledgements

The DFG (S.-L.D., J.M., and R.K. (SP 1073) and H.R. (Emmy-Noether-program)), INTAS (Grant 01-0654, A.M.) are acknowledged for their support. We thank H. Eschrig for useful discussions and A. Vasiliev and S.A. Zvyagin for providing us with $\chi(T)$ data of LiCu₂O₂. The results of the Heisenberg rings with N = 16 sites are obtained with J. Schulenburg's SPIN-PACK.

4. Note added in proof

Recently, for two closely related edge-shared CuO_2 chain based compounds spirals of the same single chain

fm-afm frustration origin as discussed above have been discovered:

 $LiVCuO_4$ (B.J. Gibson et al., Physica B 354 (2004) e253) and NaCu₂O₂, isomorphic with $LiCu_2O_2$ (L. Capogna et al. cond-mat/0411753). Concerning the present state of the debate on $LiCu_2O_2$, see also the comment S.-L. Drechsler et al. cond-mat/0411418 and the reply by T. Masuda et al. cond-mat/041245 (Phys. Rev. Lett (2005) in press) as well as their extended preprint cond-mat/0412625.

References

- [1] A.A. Gippius, et al., Phys. Rev. B 70 (2004) R01426.
- [2] T. Masuda, et al., Phys. Rev. Lett. 92 (2004) 177201.
- [3] S. Zvyagin, et al., Phys. Rev. B 66 (2000) 064424.
- [4] K.-Y. Choi, et al., Phys. Rev. B 69 (2004) 104421.
- [5] H. Wolfram, et al., Phys. Rev. B 69 (2004) 144115.
- [6] M. Haase, et al., cond-mat/0404463.
- [7] Y. Mizuno, et al., Phys. Rev. B 57 (1998) 5326.
- [8] The very existence of a zero for $\theta_{\rm CW}$ for a single fm-afm chain is obvious from the two limiting cases: (i) for $J_2 \gg -J_1$ one approaches the case of two decoupled afm chains with $\theta_{\rm CW} = -0.5J_2 < 0$ but (ii) in the opposite limit one tends to $\theta_{\rm CW} = -0.5J_1 > 0$ (fm single-chain).
- [9] R. Bursill, et al., J. Phys. C 7 (1995) 8605.
- [10] V.Ya. Krivnov, et al., Phys. Rev. B 53 (1996) 6435.
- S. Krüger, J. Richter, Phys. Rev. B 64 (2001) 024433;
 S.E. Krüger, J. Richter, J. Schulenburg, D.J.J. Farnell, R.F. Bishop, Phys. Rev. B 61 (2001) 14607.
- [12] S. Ebisu, et al., J. Phys. Chem. Solids (1998) 1407.
- [13] Notice the + sign convention of Θ_{CW} used in Ref. [3].