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The electron localization function (ELF) is implemented in the first-principles, all-electron, full-potential
local orbital method. This full-potential implementation increases the accuracy with which the ELF can be
computed for crystalline materials. Some representative results obtained are presented and compared with
the results of other methods. Although for crystal structures with directed bonding only minor differences are
found, in simple elemental metals, there are differences in the valence region, which give rise to different
ELF topologies.

1. Introduction

The electron localization function (ELF) was introduced by
Becke and Edgecombe1 as a tool to identify regions where
electrons are localized in atomic and molecular systems. Savin
et al.2 suggested an alternative interpretation of the original ELF
expression, which justified the calculation of ELF by density
functional theory-based methods. Since then, ELF has been
widely used to study chemical bonds in both molecules and
solids.3-5 Most recently, a pair density functional called the
electron localizability indicator (ELI) was proposed.6 Within
the framework of this approach, we interpret ELF as an
approximation to ELI for the single-determinantal ansatz.

The ELF distribution,η(rb), is given byη(rb) ) 1/[1 + ø2(rb)],
where

The numerator in eq 1 involves the gradients of (i) the crystal
wave functions,ψi(rb) ≡ ψνkB(rb), with band index ν and
wavevectorkB and (ii) the total charge density,F(rb). Furthermore,
the features of chemical bonding are investigated by a topologi-
cal analysis of the ELF distribution, which requires the gradient
and higher derivatives of the ELF to be computed.7 Therefore,
the ELF must be accurately calculated in order to avoid two
possible pitfalls: (i) occurrence of spurious maxima and (ii)
missing a genuine maximum due to interpolation. The former
case may occur in regions where the crystal wave functions
and hence the charge density are poorly represented, e.g., in
the interatomic regions in methods based on the atomic sphere
approximation (ASA). The latter case may show up in methods
that treat the charge density differently inside (in terms of
spherical harmonics) and outside (in terms of plane waves) the
muffin tin spheres, since in these methods there is always a
certain mismatch of the charge density at sphere boundaries.

Most of the ELF analyses reported on crystalline materials
have been performed by using the LMTO ASA. It is well-known

that electronic structure calculation methods that make no shape
approximations to the charge density (or to the potential), full-
potential methods as commonly called, have been more accurate
than the ASA versions regarding the total energy and other
physical quantities. Thus, it is conceivable that a full-potential
calculation of the ELF should yield more accurate ELF values
resulting in a more reliable chemical-bonding analysis via ELF
in crystalline materials within the density functional theory.8

However, there is an important difference between ELF and
total energy: ELF is a local quantity whose computation does
not involve integrations over the position space. Although more
accurate charge density and crystal wave functions,ψνkB(rb), are
implied according to variational principle, when the accuracy
in total energy is increased, the extent of improvement in the
calculation of a local quantity such as ELF cannot be estimated
in advance. With this in mind, it is still important to be able to
calculate the ELF with a computational scheme containing fewer
approximations. In addition, it is preferable that in the chosen
method the whole space is treated in a uniform manner (no
division of space into spheres and interstitial).

In light of these considerations, we have implemented ELF
in the first-principles, all-electron, full-potential local orbital
minimal basis method (FPLO).9 Here, we report some repre-
sentative results of the ELF calculations obtained by our FPLO
implementation and compare them with their counterparts
obtained by using the tight-binding, linear muffin tin orbital
method within atomic sphere approximation (TB-LMTO-
ASA).10,11 These comparisons show that the results can be
divided into three groups: (i) materials for which there is
basically no difference between the TB-LMTO ASA and the
FPLO calculations, (ii) materials for which there are minor
differences, and (iii) materials for which FPLO gives different
valence attractors in regions of flat ELF distributions whereas
in the TB-LMTO-ASA calculations one finds well-defined ELF
maxima instead (see below, the discussion on fcc-Al metal).

2. ELF Implementation into the FPLO Method

The FPLO method9 is based on a minimal basis approach
where each atomic orbitalnl with principal quantum numbern
and angular momentuml is represented by one basis function
only. Basis functions in the FPLO method are atomic orbital-
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like having the form:

where,RB is a lattice translation vector,sb denotes atomic sites
in the unit cell, andL stands for thelm pair, m being the
magnetic quantum number. The basis functions for each
crystallographically different atom are obtained by solving an
effective Schroedinger equation, which contains the spherically
averaged crystal potential and an artificial confining potential
of the form (r/r0)N.12 This confining potential forces the basis
functions to be more strongly localized than the atomic orbitals.
In this expression,N is set to 4 by default, but it can be treated
as a variational parameter with respect to the total energy, as
well. The value ofN is the same for all basis functions. The
quantityr0 is proportional to the nearest-neighbor distance, and
the proportionality constantx0 is specified separately for each
basis function. For genuine valence basis functions, the values
of x0’s are optimized during the self-consistency cycle. Regard-
ing the orbitals used for semicore and polarization states, the
x0’s have fixed values chosen by the user. The extent of valence
basis functions in a typical FPLO calculation is three times the
average Wigner-Seitz radius. The crystal wave function labeled
by band indexν and wavevectorkB is given as a linear
combination of Bloch functions:

The Hamiltonian whose matrix elements enter into the eigen-
value equation contains all of the symmetry-allowed spherical
harmonics of the potential,Vlm, up to some maximum orbital
angular momentum value,lmax (currently, lmax is set to 12 by
default). The charge density,F(rb) ) ∑νkB

occ|ψνkB(rb)|2, is also
expressed in terms of site-centered spherical harmonics:

In our ELF implementation, the charge densityF(rb) and its
gradient∇BF(rb) are calculated directly from the basis functions.
The charge density expression in eq 2 is not used. This is done
to ensure the consistency between the two terms forming the
numerator in eq 1.

A fundamental characteristic of the FPLO method is the
absence of atomic (or muffin tin) spheres. In the FPLO
formulation, the whole space is treated in a uniform manner,
which makes charge density continuous at all points. In the
context of ELF calculations, this is a clear advantage when
compared with the muffin tin sphere-based methods. In the TB-
LMTO-ASA method, overlapping atomic spheres are used, since
the total volume of the atomic spheres should be equal to the
unit cell volume. This constraint necessitates the occurrence of
interstitial regions between atomic spheres, where the basis
functions and hence the charge density are less accurate. In cases
where these interstitial voids become too large, the so-called
empty (or interstitial) spheres can be introduced. Because
chemical bonding may take place in these parts of the crystal
structure, the ELF calculated by the TB-LMTO-ASA method
may be less accurate especially in open crystal structures.

On the other hand, in the full-potential implementations, full-
potential linear muffin tin orbital (FP-LMTO) or full-potential
linear augmented plane-wave (FP-LAPW) methods, charge
density and potential are represented differently in the interstitial
region and inside the nonoverlapping atom-centered spheres.

The resulting mismatch of the charge density at sphere
boundaries implies a discontinuity in the radial derivative of
the charge density, and this may cause problems depending on
how this discontinuity is handled when the gradient of the
density is being evaluated.

The level of accuracy with respect to total energies in the
FPLO method is comparable to that of the other all-electron,
full-potential methods. Comparisons of the FPLO results regard-
ing total energy, equilibrium lattice constants, bulk moduli, and
magnetic moments with the corresponding quantities computed
by the WIEN code13 were reported in the original FPLO
publication.9 Similar comparisons between the FPLO and the
WIEN codes concerning band structures, densities of states, and
Fermi surfaces were also reported.14,15 Total energies are
typically found to be in agreement within a few milliHartrees
per atom, and there are no significant differences in other
physical quantities reported. In general, the FPLO program has
been used successfully in various electronic structure studies.16

Hence, the FPLO method offers a suitable computational
platform for accurate calculations of ELF for crystalline
materials.

3. Results and Discussion

For a selected set of crystalline compounds, we calculated
the ELF by using the FPLO and TB-LMTO-ASA methods
within the local density approximation (LDA).17 Regarding the
LDA exchange-correlation functionals, Perdew-Wang18 and
von Barth-Hedin19 parametrizations were used in the FPLO
and TB-LMTO-ASA calculations, respectively. For a few crystal
structures, we calculated the ELF by using three different
parametrizations of the exchange-correlation functional, Per-
dew-Wang, von Barth-Hedin, and Perdew-Zunger,20 with the
FPLO method. The ELF topologies were found to be unchanged
in these cases. In the TB-LMTO-ASA calculations, the positions
and radii of the empty spheres, whenever necessary, were
determined using the procedure proposed by ref 21. Likewise,
for the radii of the atomic spheres, the automatically determined
values were used. In the FPLO calculations, the number of
points on the radial grid was set to 400, twice the default value.
Test calculations up to 1200 radial grid points were carried out
on various crystal structures, and no changes in ELF topology
were found. Convergence criteria used for self-consistency were
10-6 for density and 10-8 for total energy. The FPLO basis
functions employed in the calculations are discussed below
separately for each case.

The materials that we have chosen can be grouped as (i)
materials containing covalent bonds (C in diamond form, C in
graphite form, and MgB2) and (ii) elemental metals (bcc-Li,
fcc-Cu, and fcc-Al). The latter can be expected to be favorite
cases for the LMTO-ASA application as they have closed-
packed structures. The topological analysis of the ELF was done
by the Basin package.22 We will be interested mainly in
comparing the ELF bonding attractors, because both computa-
tional schemes give the same results for the values of the core
attractors and the properties (volume and integrated charge) of
the corresponding core basins.

3.1. Covalently Bonded Materials. Carbon in diamond
structure and MgB2 are chosen as being good examples for
covalently bonded materials. Regarding the LMTO-ASA ap-
plication, the former is an open structure (packing fraction 34%)
requiring empty spheres whereas the latter does not need any
empty spheres. Graphite also has a quite simple picture of
chemical bonding, but the severe openness of its crystal structure
(packing fraction 17%) may pose difficulties in ELF calcula-
tions.

φRBsbnL( rb) ) φRBsbnL(| rb - sb|)Yl
m( rb - sb)

ψνkB( rb) ) ∑
RBsbnL

csbnL
νkB eikB‚(RB+sb)

φRBsbnL( rb)

F( rb) ) ∑
sb,L

Fsb,L(| rb - sb|) Yl
m( rb - sb) (2)
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The values of the ELF bonding attractors as calculated by
both methods at the experimental volumes are listed in Table
1, and ELF isosurfaces are shown in Figure 1. The lattice
parameters used in the calculations are as follows: for diamond,
a ) 3.567 Å;23 for graphite,a ) 2.461 Å andc ) 6.709 Å;24

and for MgB2, a ) 3.0851 Å andc ) 3.5216 Å.25 In all cases,
the ELF bonding attractors are found to be located at the
midpoints of the closest C-C or B-B contacts. The amount of
charge contained in each of the corresponding basins is the same
in both calculations within the errors of integration.

The FPLO basis set used in the MgB2 calculation consisted
of the following: (i) Mg: 2s, 2p as semicore, 3s, 3p, 3d; (ii) B:
1s as semicore, 2s, 2p, 3d. The basis set for C in diamond
structure used 1s as semicore and 2s, 2p, 3d as valence.
Regarding the C in graphite structure, however, this basis set
proved to be inadequate. Because of the highly anisotropic
nature of graphite (layered structure), one should use 3p basis

functions instead of the 3d to be able to account for the interlayer
interaction correctly. Normally, for a givennl atomic orbital,
there is only one radial basis function. Therefore, the extent of
thepz orbital is essentially given by the extent of the radial 2p
function, which is mainly determined by the intralayer interac-
tions. This implies that the 2pz function is relatively short-ranged
and cannot provide an accurate description of the interlayer
interaction. The 3p functions are needed to cure this inadequacy.
The total energies and the results of the ELF calculations are
in perfect agreement with these considerations. The total energy
is lower by 0.93 eV per C atom when 3p is used instead of 3d.
The basis set identical to that of the diamond structure gave
two ELF bonding attractors split along thec-axis around the
midpoint of each C-C nearest-neighbor pair. The expected ELF
pattern was obtained when the 3d was replaced by 3p. The final
result presented here was obtained by using both 3p and 3d
basis functions.

3.2. Elemental Metals.Among the different types of chemi-
cal bonds, the metallic bond has been the most elusive one. In
metals, the atoms have high coordination numbers but relatively
few valence electrons. Therefore, one would expect to find
multicenter bonds. Li and Cu are chosen as the bcc and fcc
representatives, respectively, for this view. There is also an
alternative view dating back to Pauling,26 which regards the
metallic bond as a partial (or unsaturated) bond between the
nearest neighbors. According to our TB-LMTO-ASA calcula-
tions and the previously reported results,27 Al has ELF bonding
attractors at the midpoints of the closest Al-Al contacts with
the electron count of 0.5 each. This makes the Al metal a
representative case for the “partial covalent bond” view. On
the other hand, because Al is usually regarded as the best
material for the nearly free-electron model (see, for example,
ref 23), it is very difficult to accept the bonding in Al in terms
of directed or two-center bonds. Consequently, we have included
Al in our study in order to find out whether full-potential
treatment will give a picture of multicenter bonding.28

In this section, we will concentrate first on Li and Cu, and
the case of Al will be discussed separately in the following
section. Table 2 lists the results that we obtained by using FPLO
and TB-LMTO-ASA together with the CRYSTAL29 [Hartree-
Fock (HF) level] results published earlier by Silvi and Gatti.27

The FPLO and TB-LMTO-ASA calculations were carried out
at the experimental volumes withaLi ) 3.491 Å,aCu ) 3.61 Å,
and aAl ) 4.05 Å.23 The lattice parameters used in the
CRYSTAL calculations are 3.5093, 3.61496, and 4.0862 Å,
respectively.27

For the bcc-Li, the HF CRYSTAL and TB-LMTO-ASA
methods find bonding attractors at the same positions, (6b) 0,
1/2, 1/2 (Figure 2b). Because these positions are at the centers
of octahedral holes, the HF CRYSTAL and TB-LMTO-ASA
methods predict six-center bonds in Li. In the FPLO calculation,
attractors occur at positions (12d) 1/4, 0, 1/2 (Figure 2a), which
can be interpreted as a 4-fold splitting and shifting of the
attractor from the former location at the center of an octahedral
hole toward the tetrahedral voids. The basins of these (12d)
attractors contain about one-sixth of an electron each, and they
imply four-center bonds. Although the ELF topology predicted
by FPLO is different, the description of bonding that can be
inferred from all of these three calculations has the common
aspect that bonding is multicentered (four-center vs six-center).

ELF isosurfaces for fcc-Cu are shown in Figure 2c,d,
respectively, as computed by the FPLO and TB-LMTO-ASA
methods. The FPLO basis set consisted of 3s, 3p functions as
semicore and 4s, 4p, 3d, 4d functions as valence. Because in

TABLE 1: Values of the ELF Bonding Attractors and the
Electron Count in Each Bond Basin

crystal FPLO LMTO-ASA electron count

C (diamond) 0.940 0.954 1.9
C (graphite) 0.945 0.954 2.6
MgB2 0.913 0.927 2.6

Figure 1. ELF isosurfaces in diamond (C, red) as computed by (a)
FPLO (η ) 0.93) and (b) TB-LMTO-ASA (η ) 0.94); in graphite (C,
red) as computed by (c) FPLO (η ) 0.92) and (d) TB-LMTO-ASA (η
) 0.91); and in MgB2 (Mg, blue; B, green) as computed by (e) FPLO
(η ) 0.75) and (f) TB-LMTO-ASA (η ) 0.75). Core regions are omitted
for clarity of presentation.
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Cu the 3d states are almost fully occupied (more than nine
electrons according to thenl-decomposition of the charge), 4d
basis functions are necessary to provide thed character for the
crystal wave functions. It should be noted that omission of the
4d basis functions results in a higher total energy and gives a
different ELF topology. For Cu FPLO and TB-LMTO-ASA,
methods agree with each other quite well by yielding a single
set of identical attractor positions, (8c), while the HF CRYSTAL
finds two sets of ELF bonding attractors. The set associated
with the higher ELF value occurs at (4b), and the lower ELF
value positions are reported to be (8c). In both the FPLO and
the TB-LMTO-ASA calculations, each bonding basin holds
about 1.05 electrons and represents a four-center bond. This
implies that each Cu atom contributes 2.1 electrons to its
chemical bonds in total.

3.3. Case of Al.As stated above, the HF CRYSTAL and
TB-LMTO-ASA methods both predict ELF bonding attractors

at the midpoints of the nearest neighbors (Table 2 and Figure
2f). The FPLO result listed in Table 2 for Al is obtained by
using the default value,N ) 4, for the exponent of the confining
potential and the standard basis set: 2s, 2p as semicore, 3s, 3p,
3d as valence. The ELF attractors at the (32f) positions (Figure
2e) have monosynaptic basins. Because monosynaptic basins
are traditionally associated with lone pairs,30 this finding is very
surprising. To gain some insight into this result, those aspects
of the FPLO method that directly affect the quality of the crystal
wave functions should be analyzed. First of all, it is of interest
to observe how the ELF topology in Al evolves as the value of
lmax is varied. Second, the effects of (i) the orbitals included in
the basis set and (ii) the exponentN of the confining potential
(since the confining potential influences the shape and the
effective range of the basis functions) should be explored to
see if the obtained ELF topology is stable.

The symmetry-allowed values of the orbital angular momen-
tum for fcc Al are 0, 4, 6, 8, 10, and 12. The smallest value,
lmax ) 0, uses the spherically symmetric component of the
charge density only, and this choice can be considered as the
best way to turn off the full-potential aspects of a full-potential
method. The positions and values of the ELF bonding attractors
as a function oflmax are listed in Table 3. Total energies are
also provided. The valueslmax ) 0-6 gave the same attractor
positions; likewise, the results forlmax ) 8 and 10 agree with
the result of the full calculation withlmax ) 12. Although the
lmax ) 6 calculation finds the same attractor locations as do the
lmax ) 0 and 4 ones, actually a different interconnectivity pattern
is obtained for it. Thus, in Figure 3, we show the ELF
isosurfaces computed withlmax ) 0, 6, and 12 in the 1/8 of the
cubic cell.

The result of the spherically symmetric (lmax ) 0) FPLO
calculation gives ELF valence attractors at (48g) x, 1/4, 1/4
positions, wherex ) 0.055. Because the (24d) 0, 1/4, 1/4
positions correspond to the midpoints of the closest Al-Al
contacts, thelmax ) 0 results can be regarded as (24d) positions
being split. This view is consistent with the fact that the ELF
value at the (24d) basin interconnection points (i.e., saddle

TABLE 2: Values and Positions of the ELF Bonding Attractors

FPLO LMTO-ASA HF-CRYSTAL

crystal position ELF position ELF position ELF

Li-bcc (12d) 1/4, 0, 1/2 0.6393 (6b) 0, 1/2, 1/2 0.6284 (6b) 0, 1/2, 1/2 0.637
Cu-fcc (8c) 1/4, 1/4, 1/4 0.3032 (8c) 1/4, 1/4, 1/4 0.2631 (4b) 1/2, 1/2, 1/2 0.38

(8c) 1/4, 1/4, 1/4 0.20
Al-fcc (32f) x, x, x

x ) 0.19
0.5992 (24d) 0, 1/4, 1/4 0.6108 (24d) 0, 1/4, 1/4 0.617

Figure 2. ELF isosurfaces in Li as computed by (a) FPLO (η ) 0.635)
and (b) TB-LMTO-ASA (η ) 0.622); in Cu as computed by (c) FPLO
(η ) 0.285) and (d) TB-LMTO-ASA (η ) 0.255); and in Al as
computed by (e) FPLO (η ) 0.598) and (f) TB-LMTO-ASA (η )
0.603). Red spheres denote atomic positions.

TABLE 3: Values and Positions of the ELF Valence
Attractors and Saddle Points Together with the Total
Energy (in Units of Hartree per Atom) as a Function of lmax
for Al at Experimental Volume Calculated by Using the
FPLO Standard Basis Set andN ) 4

saddle point

lmax energy
attractor

value
attractor
positon value position

0 -241.917668 0.6170 (48g) x, 1/4, 1/4 0.6156 (24d) 0, 1/4, 1/4
0.6144 (32f) x, x, x 0.6129 (96k) x, x, z

4 -241.916693 0.5946 (48g) x, 1/4, 1/4 0.5944 (24d) 0, 1/4, 1/4
0.5827 (32f) x, x, x 0.5826 (96k) x, x, z

6 -241.918251 0.5983 (48g) x, 1/4, 1/4 0.5973 (96k) x, x, z
0.5982 (32f) x, x, x 0.5915 (24d) 0, 1/4, 1/4

8 -241.918299 0.5990 (32f) x, x, x 0.5969 (48g) x, 1/4, 1/4
0.5887 (24d) 0, 1/4, 1/4

10 -241.918299 0.5993 (32f) x, x, x 0.5971 (48g) x, 1/4, 1/4
0.5889 (24d) 0, 1/4, 1/4

12 -241.918298 0.5992 (32f) x, x, x 0.5971 (48g) x, 1/4, 1/4
0.5885 (24d) 0, 1/4, 1/4
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points) is very close to the attractor value, cf. Table 3. These
(48g) attractors have disynaptic basins. There is a second set
of attractors at (32f) x, x, x positions withx ) 0.19. This value
of x for the (32f) position is the same in all calculations reported
in Table 3. The quantity∆ηa-bip, defined as the difference
between the highest valence attractor value,ηa, and the lowest
value of ELF occurring at valence basin interconnection points,
ηbip, is very small having a value of 0.6170-0.6129) 0.0041.
When lmax is increased to 4, the order and the locations of the
attractors and saddle points do not change but the difference in
∆ηa-bip increases to 0.0120. Thelmax ) 6 case forms an
intermediate pattern: The attractors at (48g) [x(48g) ) 0.095]
and (32f) positions have very close ELF values; therefore, one
obtains a reducible domain first inside the octants, and the
localization domains of neighboring octants join at (24d)
positions at a smaller ELF value (η ) 0.5915). Starting with
lmax ) 8, the ELF topology converges; the locations of the
attractors and saddle points together with the order of their ELF
values are the same forlmax g 8. Note also that the total energy
at lmax ) 8 is within 1 µEh of the converged value of the total
energy.

Next, we considered the effects due to changes in the basis
sets and the confining potential. Regarding the former, additions
to the standard basis set were used as follows: (a) 4f, (b) 4d,
(c) 4s 4p, and (d) 4s 4p 4f. For the latter, different values
between 3.0 and 6.0 were chosen for the exponentN. We ended
up with a large set of calculations by combining differentN
values with different basis sets. However, a converged result
for the ELF topology did not emerge from these quite extensive
calculations. Rather, the results kept changing between two
cases: (i) single set of attractors located at (32f) and (ii) two
sets of attractors located at (48g) and (32f) positions. Actually,
in both cases, both positions (32f) and (48g) show up as locations
of ELF critical points. However, although (32f) positions always
appear as local maxima, (48g) positions are obtained as either
local maxima or saddle points, and this forms the basic
difference between the two cases.

Therefore, we studied the regions around the (48g) positions
more closely. It turns out that the ELF distributions in these
parts of the unit cell are very flat in the FPLO calculations. In
particular, the value of the local ELF maximum at a (48g) site

is only about 0.01 higher than the ELF values at nearby saddle
points. As a result, conversion of such a small peak (along one
of the principal axes) into a small well requires very small
changes in the ELF values. So, although the ELF values
themselves are converged to better than 0.01, the nature of the
critical point at (48g) keeps changing between a local maximum
and a saddle point because of this flatness of the ELF
distribution. In the TB-LMTO-ASA calculation, on the other
hand, the local maximum at the nearest-neighbor midpoint is a
well-defined peak and the ELF distribution is not flat in the
surrounding regions.

We, then, examined the situation from the viewpoint of
energetics. The total energies of the calculations that produced
these results differ from one another by less than 0.5µEh.
Therefore, we have many energetically equally well-converged
FPLO calculations, which predict either of the two results
indicated above. Because the energy differences are quite small,
it is not possible to prefer the result of one particular calculation
over that of others by using total energy as a criterion.

In all of these calculations, the basins of the (32f) attractors
are monosynaptic while those of the (48g) ones are disynaptic.
Each monosynaptic basin holds about 0.36 electrons in the cases
where only a single set of attractors are obtained. This implies
about 2.92 valence electrons per Al atom. When there are two
sets of attractors, the disynaptic basins contain most of the
valence charge. In this category, we can identify two major types
of results: (i)η(48g)

a > η(24d)
bip > η(32f)

a (similar to thelmax ) 0 and
4 cases; Table 3 and Figure 3a) and (ii)η(48g)

a ∼ η(32f)
a > η(24d)

bip

(similar to thelmax ) 6 case; Table 3 and Figure 3b). In the
former case, the monosynaptic basins are very small and they
typically hold about 0.012 electrons per basin; the disynaptic
basins each have about 0.235 electrons. These numbers add up
to approximately 2.92 valence electrons per Al atom. In the
latter case, the basin populations become∼0.07 and 0.195
electrons per monosynaptic and disynaptic basins, respectively.
The total number of valence electrons is similar to the above
values.

Recently, we learned of another full-potential implementation
of ELF.31 Our preliminary calculations with version 0.9.26 of
this FP-LAPW code31 on Al found two sets of attractors located
at (48g) and (32f) positions. The (48g) locations,x, 1/4, 1/4,
have a very smallx value; therefore, the amount of splitting
from the nearest-neighbor midpoints, (24d) 0, 1/4, 1/4 positions,
is smaller than what FPLO calculations obtain. The ELF
attractors at the (32f) locations seem to be afull-potentialfeature;
they appear in both of the full-potential implementations whereas
the TB-LMTO-ASA method does not obtain them.

At this point, the significance of the (32f) attractors is not
clear. A possible explanation can be suggested by assuming the
existence of multicenter bonds in Al. In an fcc elemental metal,
two probable locations for attractors with polysynaptic basins
are (i) (4b) 1/2, 1/2, 1/2 and (ii) (8c) 1/4, 1/4, 1/4. The former
corresponds to the center of an octahedral hole and implies six-
center bonds. The latter locations are the centers of tetrahedral
holes implying four-center bonds. The (32f) x, x, x locations
obtained by full-potential calculations for Al can be interpreted
as an indication that if multicenter bonds exist in Al, then the
corresponding ELF attractors will most probably be located at
the (8c) positions. Because thex, x, x positions can be regarded
as 1/4, 1/4, 1/4 positions each split into four, one can view the
full-potential results as an improvement over the ASA calcula-
tion toward a picture of multicenter bonding. However, as of
now, there are no rules or theorems that enable us to predict
the locations of ELF bonding attractors in advance. Hence,

Figure 3. ELF isosurfaces in Al computed with (a)lmax ) 0 (η )
0.613), (b)lmax ) 6 (η ) 0.5975), and (c)lmax ) 12 (η ) 0.598). Al
atoms are shown by red spheres.
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whether the (32f) locations are indeed a part of the correct
answer or they are a step toward it cannot be decided with
currently available tools. Resolution of this matter certainly
deserves more theoretical and computational work.

4. Summary

We have implemented ELF in the full-potential electronic
structure code FPLO. This implementation has various advan-
tages: (i) no shape approximations to the potential, (ii) uniform
treatment of charge density and potential in all space (no muffin
tin spheres), and (iii) numerically efficient because of the
minimal basis approach. This last feature makes accurate
calculation of ELF possible for systems with up to about 100
atoms in the unit cell. For larger systems (more than 100 atoms
in the unit cell), TB-LMTO-ASA is still the method of choice
due to memory and time constraints.

There are minor differences between the FPLO and the TB-
LMTO-ASA results in structures with directed bonding (two-
center bonds). On the other hand, in the structures of elemental
metals, different ELF topologies are found in the valence region.
Further studies on both simple and complex structures are
necessary in order to obtain a better idea about the effects of
full-potential treatment on ELF.
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