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The recently discovered natural minerals Cu3ZnðOHÞ6Cl2 and Cu3MgðOHÞ6Cl2 are spin 1=2 systems

with an ideal kagome geometry. Based on electronic structure calculations, we develop a realistic model

which includes couplings across the kagome hexagons beyond the original kagome model that are

intrinsic in real kagome materials. Exact diagonalization studies for the derived model reveal a strong

impact of these couplings on the magnetic ground state. Our predictions could be compared to and

supplied with neutron scattering, thermodynamic data, and NMR data.
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For decades, low-dimensional spin systems have at-
tracted broad interest due to their intriguing, unusual
ground states (GS) such as helically ordered, spin Peierls,
spin-liquid, or resonating valence-bond GS’s [1–4]. These
unusual GS’s are typically driven by competing interac-
tions or geometric frustration. Two-dimensional (2D)
quantum spin systems are of particular interest because
the competition between quantum fluctuations and inter-
actions seems to be well balanced, and fine-tuning of this
competition may lead to zero-temperature transitions be-
tween semiclassical and quantum phases [5]. There are
several examples for strongly frustrated 2D quantum spin
materials, e.g., PbVO3 [6] or SrCu2ðBO3Þ2 [7], which can
be well described by a frustrated spin-1=2 Heisenberg
model. Such 2D quantum magnets are at present most
suitable objects for the comparison between theory and
experiment.

A simple but very challenging realization of a geomet-
rically frustrated quantum magnet is the spin-1=2
Heisenberg antiferromagnet (HAFM) on a kagome lattice.
The kagome HAFM attracts much interest due to its un-
usual classical and quantum GS’s and low-temperature
thermodynamics, see, e.g., Refs. [8–13], and also due to
potential applications of a possible quantum spin-liquid
state [14,15]. The recent discovery of a natural spin-1=2
kagome compound Cu3ZnðOHÞ6Cl2 (mineral herbertsmi-
thite [16]) and a subsequent synthesis of good-quality
samples [17] have spurred both experimental [18,19] and
theoretical [11–13] investigations of this frustrated mag-
netic system. The experimental results were quite unex-
pected: Curie-Weiss behavior with a rather large �, an
upturn in magnetic susceptibility at 75 K and no spin gap
down to 100 mK are far from being consistently described
by theory. The main obstacle for theoretical studies is the
structural Cu–Zn disorder within this compound [20],
which hampers the kagome physics, but encourages the
search for new materials. A very recent discovery of two
isostructural spin-1=2 kagome systems—the minerals ka-
pellasite Cu3ZnðOHÞ6Cl2 ([21], a metastable polymorph of

herbertsmithite), and haydeeite Cu3MgðOHÞ6Cl2 [22]—
widens the range of possible investigations. These systems
are of great potential interest because (i) no cations are
located between the planes, thus less coupling between
kagome layers is expected though the interlayer distance
is reduced by about 1 Å; (ii) the presence of two isostruc-
tural compounds should allow a systematic study of addi-
tional exchange couplings beyond the original kagome
model. We have performed a theoretical electronic struc-
ture study within density functional theory (DFT) and
estimated the exchange parameters of a corresponding
Heisenberg model. For this spin model, we have calculated
the classical GS, and for a finite lattice of N ¼ 36 sites, the
quantum spin-1=2 GS.
The DFT calculations were performed using a full-

potential nonorthogonal local-orbital scheme (FPLO ver-
sion 6.00-24) [23] within the local density approximation
(LDA). The Perdew and Wang parameterization of the
exchange-correlation potential was chosen for the scalar
relativistic calculations [24]. The default basis set was
used. The strong on-site correlations of the Cu
d-electrons were taken into account using the LSDAþU
method [25]. Well converged k-meshes of 124 points for
the conventional cell and 75 points for the supercell in the
irreducible wedge were used.
The hexagonal crystal structure of both minerals con-

sists of layers (Fig. 1) perpendicular to the c direction.
These layers are built by a kagome lattice of corner-sharing
CuO4 plaquettes, which are tilted with respect to this plane,
and ZnO6 (kapellasite) or MgO6 (haydeeite) octahedra
bridging the ‘‘ring’’ of six CuO4 plaquettes. The Cu–O–
Cu angle between two neighboring plaquettes is close to
105�, providing considerable ferromagnetic (FM) contri-
butions to the exchange due to the vicinity to 90�. The
kagome layers are separated by Cl atoms, which are
bonded to H atoms that stick out of the layers. The experi-
mentally defined H position for haydeeite [26] yields the
unusually short O–H distance of 0.78 Å; the H position in
kapellasite has not been reported. To account for this
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structural peculiarity, the H position was relaxed with
respect to the total energy. We show below that it has a
dramatic impact on the exchange. Throughout the Letter,
we use the optimized H position [27] yielding �1:0 �A for
the O–H distance (Fig. 2).

Our LDA calculations yield a valence band with a total
width of 6–7 eV for both compounds with three bands
crossing the Fermi level "F according to the three Cu
atoms per unit cell (Fig. 3). The valence bands of haydeeite
and kapellasite have two pronounced differences: (1) the
rather localized d-states of Zn (between �6:5 and �4 eV)
contribute to the valence band of kapellasite while Mg
states have negligible contribution for haydeeite, and
(2) the width of the separated band complex at "F is
slightly different. Nevertheless, the same model can be
applied for the description of low-energy excitations.

The band structure (Fig. 3) reveals that the dispersion
perpendicular to the kagome planes (along �–A) is very
small, pointing to a pronounced 2D character of the sys-
tems in accordance with our expectations. The presence of
states at Fermi level yields a metallic GS, contrary to the

insulating behavior typical for undoped cuprates [28]. This
discrepancy originates from the strong on-site correlations
of the Cu 3d electrons, insufficiently described by LDA,
and can be accounted for by adding the missing Coulomb
repulsion in a model Hamiltonian or in the LSDAþU
approximation. Though LDA fails to describe the correla-
tions correctly, it is known to provide reliable values of
transfer integrals [29] which can be used for a model
analysis of the magnetic excitations. To define the relevant
orbitals for the low-energy excitations, we analyzed the
density of states (DOS) by applying local coordinate sys-
tems for all orientations of CuO4 plaquettes and calculated
the local DOS and band weights. The analysis revealed that
the bands at Fermi level belong to local Cu 3dx2�y2 and O

2p� orbitals; i.e., the standard cuprate scenario with a half-
filled antibonding dp�� band is realized. Therefore, an
effective one-band model, already applied for similar ma-
terials [30,31], is appropriate to describe the magnetic
excitations in these systems.
Three dp�� bands per unit cell lead to a 3� 3 matrix

representing the tight-binding (TB) Hamiltonian. The
number of transfer integrals, included into the TB model
was picked to get a good fit of the LDA bands which could
not be considerably improved by inclusion of further pa-
rameters. The fits shown in Fig. 3 were achieved using ten
transfer integrals, though only four of them (Fig. 1) were
larger than 10 meV. To check the stability of the leading
terms, we subsequently decreased the number of parame-
ters in our model. Based on these results, we estimate less
than 10% uncertainty in our values for the leading four
transfer integrals depending on the chosen TB
Hamiltonian. Thus, we can restrict ourselves to analysis
of the leading terms. In order to estimate the antiferromag-
netic (AF) exchange, the transfer integrals were mapped to
an extended Hubbard model and subsequently to a
Heisenberg model with JAFi ¼ 4t2i =Ueff [32].
The leading AF exchange in both systems is the nearest-

neighbor (NN) exchange JAF1 , the second largest is the

exchange along diagonals of a kagome lattice, JAFd (see
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FIG. 2 (color online). Total energy per H atom given by LDA
calculations for kapellasite (Zn) and haydeeite (Mg). The zero
energy corresponds to the calculated equilibrium distance and is
marked with a gray line. The experimental value of the O–H
distance in haydeeite is shown with a dotted line. Inset: exchange
J1 from the supercell LSDAþU calculations as a function of
the O–H distance.
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FIG. 3 (color online). TB model (squares) fitted to the band
structures (solid lines) of kapellasite (a) and haydeeite (b).

FIG. 1 (color online). The hexagonal crystal structure of ka-
pellasite and haydeeite: CuO4 plaquettes form a buckled kagome
layer bridged by ZnO6=MgO6 octahedra. The interlayer space is
filled with Cl and H (not shown) atoms.
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Fig. 1). The relevance of the latter exchange is rather
unexpected: while the pure kagome model includes J1
only, its modifications usually contain only the second
neighbor J2 [33]. In our case, we find JAF2 (and also JAFd2 )

smaller than 0.5 meV for both systems; thus, these terms
can be neglected in the following discussion. The inter-
plane coupling is much smaller than 0.1 meV, showing that
the systems are almost perfect 2D magnets. Therefore, a
J1-Jd model should be appropriate to describe the magne-
tism in good approximation.

The values of the total exchange were obtained using
total energy calculations for supercells with different spin
arrangements, where the difference in the values of total
energy originates only from spin degrees of freedom. To
obtain the leading exchange integrals, we used a doubled
cell with six Cu atoms. The supercell calculations were
performed using the LSDAþU method treating the cor-
relation on a mean field level. This approach is necessary
due to the Cu–O–Cu bond angle � 105� which leads to
sizable FM contribution according to Goodenough-
Kanamori-Anderson rules.

The results are given in Table I (JFM was evaluated as the
difference between the total J and JAF ¼ 4t2=Ueff). The
FM contributions significantly modify the size of the rele-
vant exchange integrals, but preserve their AF nature.
Here, we introduce the ratio � � Jd=J1, which is zero in
the simple kagome model and runs to infinity in case of
decoupled chains. Certainly, � may depend on external
parameters like the H position and the U values. The
change in O–H distance drastically affects the J1 exchange
(Fig. 2, inset) in both compounds, and especially in hay-
deeite, where it becomes FMwhen the O–H bond is shorter
than 0.8 Å. Thus, further quantitative analysis is based on
the empirical fact that total energy calculations provide in
general rather precise atomic positions. An accurate ex-
perimental determination of the H position is highly desir-
able for an improvement. The influence of the Coulomb
repulsion U on � is much weaker, and there are no drastic
changes in verified region (Fig. 4): � is very close to 0.36
for kapellasite and stays in the vicinity of unity for hay-
deeite for the whole range of U studied. While GS’s for

� ¼ 0 and � ¼ 1 are relatively clear, the region in be-
tween is not studied. Therefore, we have performed exact
diagonalization studies in order to clarify the influence �
on the GS.
It is well known that the classical GS of the pure kagome

HAFM (� ¼ 0) is highly degenerate [8–10]. The addi-
tional diagonal bond Jd reduces this degeneracy drastically
and selects noncoplanar GS’s with 12 magnetic sublattices
[34] among the huge number of classical kagome GS’s.
These classical GS’s of the J1-Jd model are characterized
by a perfect antiparallel (Néel) spin alignment along the
chains formed by diagonal bonds Jd and by a 120� spin
arrangement on each triangle formed by NN bonds J1. As a
result, every two spin-sublattices are Néel-like antiparallel
to each other, and these two sublattices are perpendicular to
one other group of 2 Néel-like sublattices.
For the quantum model, the GS and low-lying excita-

tions have been calculated by Lanczos diagonalization for
the finite lattice of N ¼ 36 considered previously in the
literature for the pure kagome HAFM. Note that this finite
lattice fits to the magnetic structure of the classical GS. The
calculated spin correlations hS0SRi for the classical GS as
well as for the quantum GS for � ¼ 0:36 and � ¼ 1:0 are
shown in Fig. 5. For comparison, we also show hS0SRi for
the pure kagome system, i.e., Jd ¼ 0. Obviously, the quan-
tumGS spin correlation is drastically changed by Jd. While
for Jd ¼ 0 the decay of the spin correlation function is
extremely rapid, we find a well-pronounced short-range
order for � ¼ 0:36 and � ¼ 1:0 that corresponds to the
classical magnetic structure. This leads to the conclusion
that even in the quantum model, the GS has a noncoplanar
magnetic structure giving rise to enhanced chiral correla-
tions. Moreover, it is obvious from Fig. 5 that the magnetic
correlations along the chains built by Jd bonds (R=RNN ¼
2 and 4) are strongest, indicating that the low-energy
excitations might be S ¼ 1=2 spinons causing an effec-
tively one-dimensional low-temperature physics similar to
other 2D models, e.g., the crossed-chain model [35] and
the anisotropic triangular lattice [36]. However, this issue
needs further investigation.
Finally, we mention another important difference from

the pure kagome system which is relevant for the low-
temperature thermodynamics. For � ¼ 0, the singlet-
triplet gap (spingap) is filled by 210 nonmagnetic excita-TABLE I. Transfer and exchange integrals of kapellasite and

haydeeite. All values are given in meV. The values of transfer
integrals are taken from the TB model. The AF exchange is
calculated via subsequent mapping of the transfer integrals to the
extended Hubbard and Heisenberg models. The total exchange is
taken from LSDAþU total energy calculations of supercells.
JFM is the difference between J and JAF.

kapellasite haydeeite

path t JAF JFM J t JAF JFM J

X1 87 7.5 �5:0 2.5 73 5.3 �4:5 0.8

X2 �10 0.1 �0 <0:1 �9 0.1 �0 <0:1
Xd 49 2.4 �1:5 0.9 42 1.8 �1:0 0.8

Xd2 20 0.4 �0:4 <0:1 22 0.5 �0:5 <0:1
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FIG. 4 (color online). Exchange integrals of kapellasite and
haydeeite as a function of Coulomb repulsion U.
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tions [11,12] leading to different low-temperature behavior
of the specific heat C (power-law in T) and the suscepti-
bility � (exponential decay). By contrast, we find that for
� ¼ 1 (� ¼ 0:36) there are no (only a few) singlets within
the spingap. Therefore, we do not expect any basic differ-
ence in the low-T behavior of C and �.

To summarize, we have performed electronic structure
calculations for two new spin-1=2 kagome lattice com-
pounds—kapellasite and haydeeite. Both compounds are
2D magnets, with two relevant AF exchanges: NN ex-
change J1 and the exchange along ‘‘diagonals’’ of a ka-
gome lattice Jd. We find � � Jd=J1 � 0:36 for kapellasite
and � � 1 for haydeeite. The exchanges and thus � values
are strongly dependent on the H position for which the
experimental value is unlikely with respect to the total
energy and should be reinvestigated. The presence of
significant Jd interaction leads to (i) noncoplanar magnetic
order with 12 sublattices on the classical level which at
least on a short-range scale shows similarities to the quan-
tum model, and (ii) to the shift of the low-lying singlets out
of the spingap. We especially emphasize the crucial im-
portance of Jd for all real materials with kagome geometry,
which needs careful consideration in order to obtain the
physically relevant model for the GS and the low-lying
excitations. This work is a starting point for study of these
promising model compounds. Our predictions could be
challenged and extended by low-temperature experiments:
neutron scattering and �SR to probe the spin-spin corre-
lation function, thermodynamic measurements (C and �,
see above) to check for a possible spin gap, including
pressure studies to modify � via a change of the O–H
distance.
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