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Realization of a Large J2 Quasi-2D Spin-Half Heisenberg System: Li2VOSiO4
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Exchange couplings are calculated for Li2VOSiO4 using the local-density approximation (LDA). While
the sum of in-plane couplings J1 1 J2 � 9.5 6 1.5 K and the interplane coupling J� � 0.2–0.3 K agree
with recent experimental data, the ratio J2�J1 � 12 exceeds the reported value by an order of magnitude.
Using geometrical considerations, high temperature expansions and perturbative mean field theory, we
show that the LDA-derived exchange constants lead to a remarkably accurate description of the properties
of these materials including specific heat, susceptibility, Néel temperature, and NMR spectra.
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In many recently discovered magnetic materials the de-
termination of exchange constants, without input from
electronic structure calculations, has proven very diffi-
cult and has often led to wildly incorrect parameter val-
ues. The interplay of geometry and quantum chemistry
has yielded many surprises which could not have been
anticipated without a full calculation. Examples are the
recently discovered vanadates CaV4O9 [1] and CaV3O7
[2], for which the dominant exchange interactions were
resolved and a good understanding of the material prop-
erties obtained only after analyses of electronic structure
calculations were carried out.

Frustrated square-lattice spin-half Heisenberg antiferro-
magnets with nearest neighbor exchange J1 and second
neighbor exchange J2 have received considerable atten-
tion recently. The properties of the model with J2 � 0
(or J1 � 0) are well understood [3]. The large J2 limit of
the model is a classic example of quantum order by dis-
order [4,5], where at the classical level the two sublattices
order antiferromagnetically but remain free to rotate with
respect to each other. This degeneracy is lifted by quan-
tum fluctuations leading to collinear magnetic order in a
columnar pattern. At intermediate J2�J1 there is strong
evidence for a spin-gap phase, though the nature of this
phase is not fully resolved yet [6].

While there has been tremendous theoretical interest in
these models, there were no known experimental realiza-
tions for intermediate to large J2�J1, until the investigation
of Li2VOSiO4 by Melzi et al. [7,8]. Studying the splitting
patterns of the 7Li NMR spectra, these authors presented
strong evidence for columnar order [7]. Combining sev-
eral experiments they derive [8] exchange couplings (with
J2�J1 � 1.1) well into the region where model calcula-
tions find columnar order.

However, several puzzling pieces in that excellent and
detailed study remain: (i) The ratio of exchange con-
stants was not well determined from the susceptibility
and specific heat data; we will present electronic struc-
ture and many-body calculations to show that their esti-
mate J2�J1 � 1 [8] is not justified by the data. (ii) The
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estimated T � 0 moment was anomalously small for a
system well inside the columnar ordered phase. Taking
into account the antiferromagnetic interplane coupling, we
propose that the NMR derived moment is small due to a
cancellation of hyperfine fields from neighboring planes.
(iii) The order parameter exponent b at the transition was
estimated to be b � 0.25, which is intermediate between
2D Ising and typical 3D exponents. We will show that
the interplane exchange constants differ from the largest
ones by less than 2 orders of magnitude. Thus a strong
crossover between 2D and 3D behavior could be expected.
(iv) The Néel temperature was nearly field independent
up to a field of 9 T. We will argue that our increased
estimate of J2 leads to a larger saturation field and that
combined with nonmonotonic dependence of Néel tem-
perature on field implies that the experimental results are
not anomalous.

Our study of the material Li 2VOSiO4 consists of a
two band tight-binding (TB) model fit to the LDA band
structure, which is then mapped onto a Heisenberg model
with in-plane (J1 and J2) and interplane �J�� exchange
constants. Furthermore, we develop high temperature
series expansions and perturbative mean-field theory
for the uniform susceptibility and specific heat of the
J1 2 J2 model and make quantitative comparisons with
experiments.

Li2VOSiO4 crystallizes in the tetragonal P4�nmm
system containing two formula units per cell with
a � 6.3682 Å and c � 4.449 Å [9] (see Fig. 1). The
magnetically active network of spin half V41 ions is built
up by �VOSiO4�22 layers of VO5 square pyramids sharing
corners with SiO4 tetrahedra, intercalated with Li ions.
The structure of the V41 square network suggests that both
the nearest neighbor (NN) and the next nearest neighbor
(NNN) in-plane coupling should be significant, although
it is at best difficult to decide from general considerations
which one is dominant. NN coupling is favored by the
existence of two exchange channels and shorter distance,
NNN coupling profits from the “straight” connection
between pyramids pointing in the same direction.
© 2002 The American Physical Society 186405-1
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FIG. 1. Perspective view (upper panel) of the crystal structure
of Li2VOSiO4 and projection along [001] (lower panel). The
VO5 pyramids (large diamonds) share the corners of the basal
planes with SiO4 tetrahedra (small diamonds). The Li1 ions are
indicated by circles.

In order to obtain a realistic and reliable hopping part
of a TB Hamiltonian, band structure calculations were per-
formed using the full-potential nonorthogonal local-orbital
minimum-basis scheme [10] within the local density ap-
proximation (LDA). In the scalar relativistic calculations
we used the exchange and correlation potential of Perdew
and Zunger [11]. V(3s, 3p, 4s, 4p, 3d), O(2s, 2p, 3d),
Li(2s, 2p), and Si(3s, 3p, 3d) states, respectively, were
chosen as the basis set. All lower lying states were treated
as core states. The inclusion of V(3s, 3p) states in the va-
lence states was necessary to account for non-negligible
core-core overlaps. The O and Si 3d as well as the Li 2p
states were taken into account to increase the completeness
of the basis set.

The results of the paramagnetic calculation (see Fig. 2)
show a valence band complex of about 10 eV width with
two bands crossing the Fermi level. These two bands, due
to the two V per cell, are well separated by a gap of about
3 eV from the rest of the valence band complex and show
mainly V 3dxy and minor O(2) 2px,y character (oxygens of
the basal plane of the VO5 pyramid) in the analysis of the
corresponding orbital-resolved partial densities of states
(not shown). The valence bands below the gap and above
the Fermi level have almost pure oxygen and vanadium
character, respectively. The contribution of Li and Si states
is negligible in the energy region shown.

The narrow bands at the Fermi level (see Fig. 2, lower
panel) are half filled. Therefore, strong correlation effects
186405-2
Γ X M Γ Z
wave vector

−10

−8

−6

−4

−2

0

2

en
er

g
y 

(e
V

)

10 20 30 40

DOS (eV
−1

 * cell
−1

)

Γ X M Γ Z
wave vector

− 0.2

− 0.1

0

0.1

en
er

g
y 

(e
V

)

FIG. 2. Band structure and total density of states for
Li2VOSiO4 (upper panel) and the zoomed bands closest to the
Fermi level (lower panel). The Fermi level is at zero energy.
The notation of the symmetry points is as follows: X � �100�,
M � �110�, Z � �001�.

can be expected which explain the experimentally observed
insulating ground state. Because the low-lying magnetic
excitations involve only those orbitals with unpaired spins
corresponding to the two half-filled bands, we restrict our-
selves to a two band TB analysis.

The dispersion of these bands (see Fig. 2, lower panel)
has been analyzed in terms of NN transfer t1 and NNN
transfer t2 within the [001] plane (see Fig. 1 lower panel)
and NN hopping t� between neighboring planes. Then,
the corresponding dispersion relation of the related 2 3 2
problem takes the form

E� �k� � ´0 1 2t2�cos�kxa� 1 cos�kyb��
6 4t1 cos�kxa�2� cos�kyb�2� 1 2t� cos�kzc�. (1)

The assignment of the parameters has been achieved by
two numerically independent procedures: by straightfor-
ward least square fitting of the two bands in all directions
and by using the energy eigenvalues at different selected
high symmetry points. The results are shown in Table I.
The errors can be estimated about 5% for the in-plane
transfers and 15% for the interplane term from the dif-
ferences of both mentioned above fitting procedures due
to the influence of higher neighbors. The very good agree-
ment of the TB fit with the LDA bands justifies a posteriori
the restriction to NN and NNN couplings only.

The resulting transfer integrals enable us to estimate
the relevant exchange couplings, crucial for the derivation
and examination of magnetic model Hamiltonians of the
spin-1/2 Heisenberg type:
186405-2
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Hspin �
X

ij

Jij �Si ? �Sj. (2)

In general, the total exchange J can be divided into an
antiferromagnetic and a ferromagnetic contribution J �
JAFM 1 JFM . In the strongly correlated limit, valid for
typical vanadates, the former can be calculated in terms of
the one-band extended Hubbard model JAFMi � 4t2i ��U 2

Vi�. The index i corresponds to NN and NNN, U is the
on-site Coulomb repulsion, and Vi is the intersite Coulomb
interaction. Considering the fact that the VO5 pyramids
are not directly connected, but via SiO4 tetrahedra, fer-
romagnetic contributions JFM are expected to be small.
For the same reason, the intersite Coulomb interactions Vi
should be small compared with the on-site repulsion U.
From LDA-DMFT(QMC) studies [12] and by fitting spec-
troscopic data to model calculations [13], U � 4–5 eV
is estimated for typical vanadates. Therefore, we adopt
U � 4 eV and U � 5 eV as representative values to es-
timate the exchange constants and their sensitivity to U.
The calculated values for the exchange integrals are given
in Table I.

Comparing our calculated exchange couplings with the
experimental findings [8], we find excellent agreement for
the sum J1 1 J2 � 9.5 6 1.5 K [14] of the in-plane cou-
plings, reported from susceptibility data [8] to be J1 1

J2 � 8.2 6 1 K. In contrast, we find a ratio J2�J1 � 12
which exceeds the experimentally derived ratio in Ref. [8]
J2�J1 � 1.1 6 0.1 by an order of magnitude.

In order to investigate the consistency of our calculated
parameters with the experimental data, we turn to high
temperature expansions [16] for the J1 2 J2 Heisenberg
model. Series expansion coefficients are calculated com-
plete to order b9, for arbitrary ratio of J2�J1 for the uni-
form susceptibility �x� and the internal energy. From the
latter, the series coefficients for the specific heat �C� are
readily obtained. Standard series extrapolation methods
are then used to get the temperature dependent suscepti-
bility and specific heat. We have also developed a per-
turbative mean-field theory, analogous to chain mean-field
theories [17], which for small J1�J2 allows us to calculate
the x accurately down to T � 0. However, since the very
low temperature behavior is not relevant to the comparison
with experimental data we defer discussion of the pertur-
bative mean-field theory to a more extensive paper [18].

The experimental susceptibility data do not show a
Curie-Weiss regime at high temperatures. Thus any effort
to fit the data both near room temperature and at tem-
peratures of order J will fail. Since we are interested

TABLE I. Transfer integrals of the two-band TB model and
the corresponding exchange couplings for different values of
the Hubbard U .

t1 (meV) t2 (meV) t� (meV) U (eV) J1 (K) J2 (K) J� (K)

8.5 29.1 24.8 4 0.83 9.81 0.27
5 0.67 7.85 0.22
186405-3
in the behavior of the system at low temperatures, we
confine attention to the temperature region T , 20 K
(which still goes more than twice above the Curie-Weiss
temperature). We find that fitting of the susceptibility
and specific heat data is not sensitive to J2�J1 ratio. In
looking for consistency between the LDA calculations and
the experimental data, we adopt the following strategy.
In LDA, the ratio of exchange constants should be best
determined as the parameter U cancels out. Hence, we
fix J2�J1 � 10 consistent with LDA. We then vary g
and J2 to obtain the best fit to the susceptibility data. This
is obtained for J2 � 6.1 K, 20% smaller than the lower
bound of the LDA calculation. The agreement is still
remarkable for an ab initio calculation.

The susceptibility fit, as shown in Fig. 3, is excellent.
The specific heat data are now compared with theory with
no adjustable parameters. This is shown in the inset of the
figure. The agreement is remarkable. We also applied the
same fitting procedure for J2�J1 � 1 the value proposed in
Ref. [8]. The agreement is very poor [18]. Thus, although
the susceptibility and specific heat data do not allow us to
fix the exchange integrals unambiguously, they are quite
consistent with small J1�J2 ratio as found in LDA, and
inconsistent with J2 � J1.

Accurate determination of the J2�J1 ratio can come from
measurements of the spin-wave dispersion throughout the
Brillouin zone. The dispersion has been calculated by
several authors [5,19]. Throughout the columnar phase,
i.e., independent of J2�J1 there are gapless excitations at
�0, 0�, �0, p�, �p, 0�, and �p, p�. However, the high energy
spin-wave dispersion and the X-Y asymmetry of the spec-
tra, which comes from ferromagnetic alignment along one
direction and antiferromagnetic along the other, depends
sensitively on J2�J1.

FIG. 3. Calculated (solid lines) susceptibility x and specific
heat C (inset) for J2 � 6.1 K, g � 1.9, and J2�J1 � 10. The
different curves correspond to different Pade approximations and
demonstrate the range of validity of the HTE. The experimental
data from Ref. [7] are plotted as circles.
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One of the most puzzling aspects of the experimental
results [8] is the small moment of 0.24mB at T � 0, ob-
tained from the NMR split patterns. In contrast, the mo-
ment of the square-lattice Heisenberg model is well known
to be �0.6mB [15]. Taking into account the considerable
antiferromagnetic interplane coupling J� resulting from
our calculation, a part of the discrepancy can be under-
stood: The Li nuclei sit between two pairs of inequivalent
V atoms, which results in a partial cancellation of the hy-
perfine fields from antiferromagnetically ordered NN and
NNN V sites (see Fig. 4). This partial cancellation does
not change the arguments of Melzi et al. for the pattern
of line splitting (including intensities) and its relation to
columnar order because the ordering pattern inside the
planes remains the same. However, it leads to a reduc-
tion in the effective hyperfine coupling and hence to an
enhancement of magnetic moment derived from the line
shift. Taking into account the calculated two center over-
lap integrals for Li and NN and NNN V 3d orbitals, re-
spectively (see Fig. 4) a crude estimate from Slater-Koster
integrals suggests that the NMR split would be reduced by
an additional factor of about 2. This results in a moment
of about 0.5mB, much closer to the value expected for the
2D Heisenberg model.

We now turn to the interplane couplings and the mea-
surements of the Néel temperature, TN . Applying the
expression TN � 0.36J�j2�TN � [3,20] (j is the in-plane
correlation length), to our LDA calculated exchange con-
stants, leads to the estimate TN � 3.6 6 0.4 K, which is
remarkably close to the experimental value of 2.8 K. Fur-
thermore, the saturation field for our calculated exchange
constants is about 30 T, which is much bigger than the
9 T field applied by Melzi et al. [21]. The Néel tempera-
ture should go to zero at the saturation field. However, we
note that due to suppression of spin fluctuations the Néel
temperature can increase slightly with field, as happens
in the purely 2D model. Thus, the experimental result of
very weak field dependence of the Néel temperature up to
9 Tesla is consistent with our expectations. The apprecia-
ble but still small 3D couplings should also give rise to 3D

(a) (b)

FIG. 4. Sketch of the different magnetic environments for the
7Li NMR. The Li and V sites are represented by black and
gray circles, respectively. The arrows indicate the direction
of the V spin. Full lines symbolize the stronger interaction
with the NN vanadium sites, dashed lines the weaker interaction
with the NNN vanadium sites. The different environments cause
(a) no NMR shift due to complete moment-cancellation; (b) up
or down shift with partial moment-compensation.
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critical behavior at the finite temperature transition with
strong crossover effects. These results on the field depen-
dence of the Néel temperature and the critical behavior at
the transition in weakly coupled quasi 2D Heisenberg sys-
tems deserve further theoretical attention.

To summarize, we have used the LDA to calculate
exchange constants for the compound Li2VOSiO4 and
developed numerical studies for the corresponding
Heisenberg model to show remarkable consistency with
experimental properties. Electronic structure calculations
on the closely related material Li2VOGeO4 will be
presented in a forthcoming publication [18]. The key
differences are the considerably smaller J2�J1 ratio and
coupling to higher neighbors in Li2VOGeO4. Finally,
these materials have a substantial 3D coupling, and it
would be interesting to find one that does not.
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