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FIG. 1 (color online). Susceptibility of Heisenberg rings with
�J1 � J2 � 8:2 meV, JDC � 0. N � 16 sites, gL � 2:24 and
2.0, respectively, (full lines) compared with Ref. [1]: � magnetic
field H k c; � H k �a; b�. Inset: the DC scenario [(a), [1]]
compared with the single-chain scenario (b). Thick lines symbol-
ize strong coupling. The empirical J’s are in accord with LDA
and microscopic estimates [7]. Naturally, the finite cluster ap-
proach cannot describe the low-T behavior of ��T�.
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Comment on ‘‘Competition between Helimagnetism
and Commensurate Quantum Spin Correlations in
LiCu2O2’’

In a neutron scattering investigation of LiCu2O2 Masuda
et al. [1] reported the direct observation of an incommen-
surate (IC) magnetic structure below 22 K. Though this
study confirms similar indirect IC observations [2–4]
pointing to the presence of frustrated magnetic interac-
tions, they deserve now more detailed work to elucidate
the microscopic origin of that frustration. We will show
that the adopted antiferromagnetic (AFM) double-chain
(DC) Heisenberg model [1–3] [Fig. 1(a)] suggests an un-
realistic frustration scenario for LiCu2O2. It should be
replaced by a ferromagnetic-(FM)-AFM frustrated single-
chain model [Fig. 1(b)] [4,5]. Based on electronic structure
(LDA) and cluster calculations as well as a phenomenol-
gical analysis of the magnetic susceptibility ��T�, we
arrive at opposite estimates compared with Ref. [1] with
respect to the magnitude or sign of the main couplings. The
controversy concerns the following main points:

(i) Most importantly, the signs of the nearest-neighbor
(NN) inchain exchange J1 are opposite: AFM� 1:68 meV
in Ref. [1] versus FM� 11� 3 meV in our analysis [4,7].
For CuO2 chains with Cu-O-Cu bond angles � near 94 � as
in Li2CuO2 (with FM inchain order), according to the
Kanamori-Goodenough rule and to the FM direct Cu
3d-O 2p exchange, a total FM J1 < 0 can be expected.
However, its magnitude is sensitive to the competition with
a �-dependent AFM contribution to J1 [4]. Hence, too
simplified distance-only based suggestions [1] that j J1 j�
J2 do not hold here.

(ii) We found the NN inchain coupling J2 AFM (generic
for CuO2 chains), i.e., frustrated with FM J1 and any JDC.
Moreover, we estimated 	 	 J2=J1 
�1. However, the
real source of frustration J2 is ignored in Ref. [1]. Also the
��T� (Fig. 1) and the AFM Curie-Weiss constant [2] can be
explained with 	 � �1:0 and �1:1, respectively.

(iii) A dominant interchain coupling JDC � 5:8 meV
is claimed by Masuda et al. whereas from our LDA analy-
sis a tiny JDC 
 0:5 meV only follows. We ignore it to
first approximation. The weakness of JDC is caused by
the tiny interchain (DC) overlap of the predominant O
2px;y orbitals of the CuO4 plaquettes forming the CuO2

chains. Note that if J1 < 0, the DC is unfrustrated for J2 �
0.

Finally, we note that Masuda et al. [1] argue that their
propagation vector � would contradict our J ratio: 	 �
�1=4 cos�2����. However, this simple expression is valid
for single chains with classical spins s � 1. In our case
with s � 1=2, quantum fluctuations [6], interchain cou-
pling, and spin anisotropy do affect the helix and 	
strongly.

To conclude, the application of the AFM DC-model of
Ref. [1] to LiCu2O2 is not justified whereas the proposed
frustrated single-chain model with FM J1 and AFM J2
0031-9007=05=94(3)=039705(1)$23.00 03970
couplings is consistent with the experimental data and
the general physics of CuO2 chains.
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