

Available online at www.sciencedirect.com

Physica B 359-361 (2005) 1195-1197

www.elsevier.com/locate/physb

²³Na NMR investigations of the itinerant ferromagnets NaFe₄Sb₁₂ and Na_{0.5}Ca_{0.5}Fe₄Sb₁₂

A. Rabis^{a,*}, M. Baenitz^a, A. Leithe-Jasper^a, A.A. Gippius^{a,b}, E.N. Morozova^{a,b},
W. Schnelle^a, H. Rosner^a, J.A. Mydosh^{a,c}, Y. Grin^a, F. Steglich^a

^aMax-Planck-Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, Dresden 1187, Germany ^bFaculty of Physics, Moscow State University, Moscow, Russian Federation ^cKamerlingh Onnes Laboratory, Leiden University, The Netherlands

Abstract

A ²³Na $(I = \frac{3}{2})$ NMR study is presented on the itinerant ferromagnets NaFe₄Sb₁₂ and the isostructural Ca-substituted compound Na_{0.5}Ca_{0.5}Fe₄Sb₁₂ performed in 7.05 and 11.74T in the temperature range from 4 to 300 K. Both compounds show a bulk ferromagnetism below 85 K. Static (Knight-shift) and dynamic (spin-lattice relaxation) measurements are described in the framework of the SCR theory for itinerant d band metals. © 2005 Elsevier B.V. All rights reserved.

PACS: 75.50.Bb; 76.60.Cg; 76.60.Gv

Keywords: NMR spectroscopy; Itinerant ferromagnetism

1. Introduction and experimental

Research on filled skutterudites MT_4X_{12} (T = Fe, Ru, Os; X = P, As, Sb) is mainly focussed on rare-earth systems due to the occurrence of strong correlations leading to superconductivity, heavy-Fermion or Kondo insulator behaviour [1–4]. In contrast, our investigations are devoted to the new systems MFe₄Sb₁₂, with

*Corresponding author. Tel.: +49 351 4646 3215; fax: +49 351 4646 3232. M = Na, K, Ca or Ba, where the magnetism comes exclusively from iron. NaFe₄Sb₁₂ and KFe₄Sb₁₂ show bulk ferromagnetism below 85 K, whereas the Ca and Ba compounds are not. Fixed moment calculations suggest that strong spinfluctuations prevent ferromagnetic order in the Ca and Ba systems. NaFe₄Sb₁₂ and also the 50% Ca-substituted compound, Na_{0.5}Ca_{0.5}Fe₄Sb₁₂ exhibit surprisingly the same ferromagnetic ordering temperature accompanied by weak itinerant iron moments and critical spin-fluctuations [5–8]. Both compounds crystallize in a BCC crystal structure.

E-mail address: rabis@cpfs.mpg.de (A. Rabis).

^{0921-4526/\$ -} see front matter 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.physb.2005.01.343

(Im $\tilde{3}$). It is suggested that NaFe₄Sb₁₂ belongs to the class of half-metallic ferromagnets which are promising materials for spin-electronic devices [6,9]. ²³Na NMR investigations on the Ca-substituted sample in comparison with the pure sample provide new information about the magnetism and its development on a microscopic scale.

The ²³Na NMR spectra were obtained using a Bruker MSL 300 spectrometer ($B_0 = 7.05$ T) and a Bruker Avance 500 ($B_0 = 11.74$ T) spectrometer. A spin-echo pulse sequence ($90^\circ - \tau - 180^\circ$) was employed. The ²³Na spinlattice relaxation times were measured with the saturation-recovery technique. The Knight-shifts were estimated with a 1 M NaCl solution ($K_{\text{NaCl}} = 0.00\%$) as reference.

2. Results and discussion

The ²³Na Knight-shift (K) as a function of temperature is plotted in Fig. 1 together with the DC-susceptibility (χ) (see inset). K(T) is nearly equal for the pure and the Ca-substituted sample, whereas differences in the $\chi(T)$ plot appear especially at lower temperatures. K is negative over the entire temperature range which indicates a dominant indirect transferred interaction via core polarization of the inner Na shells due to itinerant 3d iron electrons [10–12].

Fig 1. K vs. T, inset χ vs. T, of NaFe₄Sb₁₂ and Na_{0.5}Ca_{0.5}. Fe₄Sb₁₂ in $B_0 = 7.05$ T.

The hyperfine coupling constant $A_{\rm hf}$ is given by $N_{\rm A}\mu_{\rm B} dK/d\gamma$. Two different hyperfine coupling constants were calculated for each compound from the two linear regimes above and below $T_{\rm C}$ (Fig. 2). In general both, K and γ as well are composed of contributions from d spins (transferred field), s-like conduction electrons (Fermi contact field), and diamagnetic core contributions. The intercept points with the K axis (for $\gamma \rightarrow 0$) provide rough estimations of the diamagnetic and s-conduction electron contributions. These values are negligibly small ($K_0 = +0.19\%$ for $Na_{0.5}Ca_{0.5}Fe_4Sb_{12}$ and $K_0 = +0.15\%$ for NaFe₄Sb₁₂). The larger value for the Ca-substituted compound is suggested from band structure calculations which indicate a higher DOS as for NaFe₄Sb₁₂ due to the larger carrier concentration.

 $1/T_1$ depends strongly on the external field. Critical spin-fluctuations are dominant in lower fields (3.5 T) [7] while a clear kink is observed at higher fields (7.05 T, 11.74 T). Moriya's SCR theory: $1/T_1 = T\chi k/(1 + \chi^3 B^2 a_F)$ [11] gives a sufficient agreement between data and calculations (Fig. 3). For the description of $1/T_1(T)$ data a set of two a_F and one k parameters are required. The a_F parameter is related to the Fermi surface of the 3d electrons. The kink indicates the crossover from a larger to a smaller Fermi surface as evidenced from band structure calculations.

Fig. 2. *K* over χ of NaFe₄Sb₁₂ and Na_{0.5}Ca_{0.5}Fe₄Sb₁₂ in *B*₀ = 7.05 T.

Fig. 3. $1/T_1(T)$ of NaFe₄Sb₁₂ and Na_{0.5}Ca_{0.5}Fe₄Sb₁₂ in $B_0 =$ 7.05 T with the appropriate Moriya calculations (for small a_F : solid line and for large a_{F0} : dashed line, NaFe₄Sb₁₂: $a_F = 0.01$ a_{F0} and Na_{0.5}Ca_{0.5}Fe₄Sb₁₂: $a_F = 0.03$ a_{F0}).

3. Conclusions

From ²³Na NMR investigations, we determined that the nature of the ferromagnetism is robust against Ca-substitution. K(T) is very similar for both samples, where the A_{hf} values are surprisingly small, negative, and slightly different. We attribute this to small itinerant magnetic moments and weak core polarization.

 T_1 is nicely described within the SCR theory with a clear sign for reduction of the d-electron Fermi surface ($\sim a_F$) at T_C . The difference in a_F is smaller for the Ca-substituted sample ($a_F =$ 0.03 a_{F0}) which indicates a slightly larger Fermi surface.

References

- [1] I. Shirotani, et al., Phys. Rev. B 56 (1997) 7866.
- [2] N. Takeda, M. Ishikawa, J. Phys. Soc. Japan 69 (2000) 868.
- [3] E. Bauer, et al., Phys. Rev. B 66 (2002) 214421.
- [4] H. Sato, et al., Physica B 328 (2003) 34.
- [5] A. Leithe-Jasper, et al., Phys. Rev. Lett. 91 (2003) 372081.
- [6] A. Leithe-Jasper, et al., Phys. Rev. B 70 (2004) 214418.
- [7] A.A. Gippius, et al., unpublished results.
- [8] A. Rabis, et al., J. Magn. Magn. Mater. 272–276 (2004) 830.
- [9] J.M.D. Coey, S. Sanvito, J. Phys. D: Appl. Phys. 37 (2004) 988.
- [10] E.A. Turov, M.P. Petrov, Nuclear Magnetic Resonance in Ferro- and Antiferromagnets, Wiley, New York, 1972.
- [11] T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism, Springer-Verlag, Heidelberg, 1985.
- [12] A.J. Freeman, R.E. Watson, Magnetism, Academic Press, New York, 1965.