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Abstract

In the theoretical study of the origin of superconductivity in MgB2, the importance of the two dimensionality of the

electronic structure has not been clear. Here we use the related system, and predicted superconductor, Li1�xBC to il-

lustrate the importance the two dimensionality of the r bands has for (1) the occurrence of high Tc, (2) the possibility of
raising the critical temperature, and (3) the lattice instabilities that accompany strong electron–phonon coupling.
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1. Background: MgB2 and Li1�xBC

A good understanding of conventional �high
temperature superconductivity� [1] in intermetallic

compounds (Tc � 20 K) resulted from intense re-

search conducted in the 1960s and 1970s, and one

feature that emerged was that cubic crystal struc-

tures were most favorable for high critical tem-
perature. Examples are the A15 compounds (Tc up
to 23 K) and NbC1�xNx, with Tc near 17 K. The

discovery of MgB2 with Tc ¼ 40 K [2] has upset

this and several other ‘‘understandings,’’ including

the need for high carrier density of states NðEFÞ
and open-shell transition metal atoms––MgB2

has neither. The theoretical work since January

2001 [3–8] has clarified many of the causes of this
high Tc: strongly covalent-bonding states, nor-

mally fully occupied in covalently bonded materi-

als, are driven to the Fermi level (EF) by the

chemistry of MgB2, and the resulting hole carriers

are exceedingly strongly coupled to the bond-

stretching modes. This ‘‘covalent’’ coupling is

what drives the critical temperature from zero (or

near) to 40 K.

The role of two dimensionality (2D), although
noted many times, has remained less clear. This

question is particularly important in view of rela-

tively high temperature superconductivity discov-

ered recently in other layered materials: Tc up to

25.5 K in electron-doped HfNCl [9], up to 14 K in

CaSi2 [10] (which is isostructural with MgB2), and

up to 11 K in Y2C2I2�xBrx [11]. Here we clarify

several aspects of electron–phonon coupling in a
2D electronic system, using the system Li1�xBC

that lies within the same class of materials (Fig. 1)

as MgB2 and has been predicted to have even

stronger coupling than MgB2 [12,13]. LiBC itself is

a semiconductor, but hole doping should occur

nearly rigid-band-like [13], leading to cylindrical
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hole Fermi surfaces that are essentially like those

that were predicted and then observed in MgB2

[15–17]. The strong electron–phonon coupling that

accompanies the transition to the metallic state

produces remarkable changes in the phonon

spectrum, as calculated from density functional

linear response theory and displayed in Fig. 2. A

more thorough discussion of the phonon spectra

and effects of electron–phonon coupling are pre-

sented elsewhere [13]. Here we concentrate on
clarifying the role of two dimensionality.

2. Importance of the -band two dimensionality

The cylindrical r Fermi surfaces of MgB2 and

hole-doped LiBC allow an analytic treatment of

EP coupling that facilitates understanding. We
consider a single Fermi surface. Phonon energies

xQ (�h ¼ 1, and including the branch index in the

label Q) are given by

x2
Q ¼ X2

Q þ 2XQPðQ;xQÞ; ð1Þ

where the unrenormalized frequency XQ includes

all self-energy effects except those arising from

electron scattering within the r bands. The pho-

non self-energy due to the r carriers (with dis-
persion ek ¼ ðk2x þ k2y Þ=2m�) is (gQ � Q=2kF)

PðQ;xÞ ¼ �2
X
k

jMk;Qj2
fk � fkþQ

ekþQ � ek � x � id
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h

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g�2

p i
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Here fk � f ðekÞ is the Fermi occupation factor, a
mean square matrix element has been extracted
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Fig. 2. Phonon dispersion curves from linear response calcu-

lations for (top) semiconducting LiBC and (bottom) strongly

hole-doped and metallic Li0:75BC, with bond-stretching modes

connected by heavy lines. The important difference is the ex-

tremely strong renormalization downward (x2
Q decreases by

�60%) for Q < 2kF; the extreme van Hove singularities at 2kF
along C–K, M–C, A–L, H–A are apparent.

Fig. 1. Crystal structure of LiBC, illustrating the similarity to

MgB2. The B–C layers correpsond to the B–B graphene layers

of MgB2, and Li ions lie in the same interstitial positions. B and

C alternate along the ĉc axis, doubling the unit cell.
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from the sum, and the usual adiabatic approxi-

mation has been made, leaving the self-energy in

terms of the two dimensional Lindhard function

v2DL [18]. The density of states NðeÞ ¼ Acellm�=2p
per spin per unit 2D cell (Acell is the basal plane
area) is independent of energy in 2D. Since the

unrenormalized optical modes should vary

smoothly for Q < 2kF and is flat for Q ! 0, and

the two dimensional susceptibility is constant, the

bond stretching (‘‘E2g’’) frequencies with Q < 2kF
are renormalized to the nearly Q-independent
value

x2
2g ¼ X2

2g � 4NðeFÞX2gjM j2: ð3Þ

Note that the softening is proportional to the

product of the square of the deformation potential

and the density of states (i.e. the effective mass),

but it is independent of the doping level of r holes

nr ð/ k2FÞ. Hole doping changes the fraction of

phonons that are renormalized (E2g derived modes

with Q < 2kF) but does not affect the amount of
softening.

The phonon line width cQ is given by

cQ ¼ XQ

xQ
jImPðQ;xQÞj

¼ pXQjM j2 8p
Acell

N 2ðeFÞ
pð2kFÞ2

HðgÞHð1� gÞ
g

ffiffiffiffiffiffiffiffi
ð1�

p
g2Þ

" #
: ð4Þ

The divergence for g ! 1 (Q ! 2kF) is integrable,
and the singularity at g ! 0 (also integrable) is an

artifact that can be handled directly when Q � 0

quantities are needed [19] but involves negligible

volume. Note that the line width is proportional to
the square of the effective mass, and to the square

of the deformation potential, but in addition it is

inversely proportional to the r-hole doping level

(/ k2F). This singular behavior of the line width at

low doping level may introduce new behavior as

2D materials are doped (viz. Li is extracted from

LiBC) where non-adiabatic effects also become a

factor.
Of central importance to the determination of

Tc is the total k2g from the bond-stretching modes,

and of course its variation with doping is of great

interest. Since k is the average over all the modes of
the crystal of the mode k ðkQÞ, it can be expressed

as the contribution from the strongly coupled and

renormalized bond stretching and the rest: k ¼
k2g þ k0. Using the expression for kQ in terms of

the line width [20], one finds for a hexagonal cell

(Acell ¼ ð
ffiffiffi
3

p
=2Þa2)

kQ ¼ 2Nm

pNðeFÞ
cQ
x2

Q

¼ 8XQffiffiffi
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Here the average over Nm phonon branches m has

been included explicitly in the notation.

Various results can be gathered:

• from Eq. (3), the amount of softening is inde-

pendent of any explicit dependence on doping
level,

• the line width cQ, and the mode kQ, increase

without bound (as k�2F ) as the doping level (i.e.

kF) is decreased,
• the fraction of phonons (proportional to k2F)

that are strongly coupled decreases with doping

level,

• as a result, the total coupling strength k2g from
the bond-stretching modes is independent of

any explicit dependence on the doping level

(via kF),
• the mean value of the mode kQ for the softened

E2g modes, unlike the zone average, tends to di-

verge as the hole doping decreases,

• this divergence signals that Migdal theory for

the coupled electron–phonon system is no long-
er justified for these renormalized phonons.

The usual criterion for failure of Migdal�s
theorem is losing the adiabatic approximation

(x2g=eF � 1). Here the failure is different: due to

the very large mode k�s the necessary condition

kQxQ=eF � 1 no longer holds, even when xQ=eF is
not strongly violated.

Applying these relations and using values esti-

mated from Fig. 2: X2g 
 140 meV, x2g 
 90 meV,

one obtains an average mode coupling strength for

E2g phonons with g < 1 is at least 25. Since only 4/

18 branches are strongly coupled, and only about
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7.5% of the zone lies in the region g < 1, the

contribution to k from the strongly coupled E2g

modes is roughly 25� 4=18� 0:075 
 0:4, very

consistent with the value obtained from linear re-

sponse calculations of a2F from these modes. The

mean mode k from all other phonons (equal to
their contribution to k since it includes 98% of all

modes) also is 
0.4.
The phonon relative line width is given by [20]

cQ=xQ ¼ kQpNð0ÞxQ=4 � 1=2; where the calcu-

lated NðeFÞ ¼ 0:28 eV�1 per unit cell per spin for

the r bands has been used. This result cQ � xQ for

the E2g branch with Q6 2kF is crude but not far

from the experimental values [21,22] (Raman line
width of MgB2 equal to 1/3 to 1/2 of the peak en-

ergy) and reflects the fact that this phonon branch

is so ill-defined from extremely strong EP coupling

that conventional phonon theory, and thus all of

the expressions above, are becoming suspect.

Now we summarize and discuss some implica-

tions of these results. Use of Li1�xBC has allowed

us to identify and quantify the extreme phonon
softening arising from the ultrastrong EP coupling

to E2g modes; this behavior occurs also in MgB2.

Mode k0
2gsP 25 and line widths comparable to

the frequency point to inadequacies of standard

(Migdal) EP theory for these systems. The widely

discussed polaronic effects in quasi-2D systems

[23,24] are not evident in ARPES [14] and dHvA

[15] data, which reflect bandlike quasiparticles
both at high energy and low energy. In the optic

phonon range, however, the dynamical behavior

of the system must be very complex, and may be at

the root of the confusing optical conductivity data

[25]. Peaking of the interaction strength at 2kF
suggests polaronic correlations that are most

pronounced at wavelength 2p=2kF 
 6a, x � 55

meV, in Li0:75BC; bond-stretching modes with
wavelengths longer than this are ill defined and

will couple to other modes.

This extremely strong, and abruptly Q depen-

dent, EP coupling provides new insight into the

controversy about limits on Tc from lattice insta-

bilities [26]. Any tendency toward higher Tc for

higher doping level in Li1�xBC will not be due

simply to higher carrier concentration, as there is
no kF dependence of k2g in Eq. (5). Although ‘‘NðeÞ
is constant’’ is a good guideline, actually NðeFÞ can

change due to non-parabolicity of the dispersion

relation. Fig. 3 shows the kF dependence of the

effective mass m�ðkFÞ (see caption) for Li1�xBC, and

it can be seen that the resulting increase in k2g with
doping can be important. Increased doping, and

the larger value of kF, means that more phonons are
renormalized, but the total coupling strength k2g is
redistributed over these additional softened pho-

nons. For low doping level, the increasingly large

coupling may impact crystal stability directly; of

course, non-adiabatic corrections must be included

in the theory in this regime. A way to try to increase
Tc would be by increasing the deformation poten-

tial (by choice of constituent atoms or layered

structure) or by increasing m� (possibly by pres-

sure); such changes would also increase the soften-

ing and move the system closer to instability as

conventional theory would predict. We remind

that, in 2D, all of the phonons are renormalized by

the same amount––no single Q vector is singled out
for instability. These two mechanisms of increasing

k illustrate the importance of the Q-distribution of

coupling strength for (in)stability.
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Fig. 3. Calculated effective band mass m�ðkFÞ defined by

ek ¼ k2=2m�ðkÞjkF , for Li1�xBC. The notation ‘‘M/3’’ denotes a

distance in the Brillouin zone one third of the way to the M

point. The small splitting of the dispersion of both light and

heavy holes indicates how small the interlayer interaction (one

measure of non-2D character) is in Li1�xBC.
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