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Abstract

An algorithm for the efficient and fast calculation of dispersive magnetic excitations in rare earth based systems has been developed.
Crystal field anisotropy and anisotropy of the two ion interactions can be taken into account. It is based on the standard mean field—
random phase approximation of the problem. In analogy to lattice dynamical calculations the central problem of finding the poles of the
dynamical susceptibility y(Q, w) has been reduced to the diagonalisation of a dynamical matrix. This approach is applicable to complex
magnetic structures, it is fast and easily generalised to include many single ion transitions and orbital interactions.
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1. Introduction

Many special models have been developed for the calcu-
lation of dispersive excitations in rare earth based systems
(see [1] for an overview). An example is the spin wave
model in ferromagnets, which is valid for negligible single
ion anisotropy. For systems with significant crystal field
anisotropy, pseudo spin models have been used, such as
in the case of the cuprates [2]. Recently systems with large
multipolar interactions have been investigated and isospin
models have been developed to interpret the dispersive
modes, such as in the case of CeBg [3]. All these special
models are based on or equivalent to the mean field—
random phase approach to the problem. In this article a
very general and fast method for the calculation of disper-
sive excitations in rare earth based systems is presented.
The model is applicable to arbitrary complex magnetic or
orbital structures. Single ion anisotropy, isotropic and
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anisotropic two ion interactions can be treated according
to the following magnetic Hamiltonian .
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The first term describes the crystal field (Stevens operators
07, see the table in the Appendix) [4], the second the mag-
netic two ion interaction, the third the Zeeman energy
describing the effect of the application of an external
magnetic field. The method is easily generalised to the case
of multipolar interactions by identifying the components
(x=a,b,c,...) of the angular momentum operator J with
the first order Stevens parameters according to the table
in the Appendix.

2. The mean field-random phase approximation

In order to define the computational problem this sec-
tion is devoted to the description of the standard mean
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field-random phase approximation, which is commonly
used to calculate dispersive magnetic excitations in rare
earth based systems. Neutron spectroscopy is the most
important experimental method for the determination of
these excitations. The following form of the double differ-
ential inelastic neutron cross section of magnetic excita-
tions has been given in [1]'
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In Eq. (2) N denotes the number of magnetic atoms in the
sample, k and k’ the wavevector of the incoming and
scattered neutron, respectively. The total magnetic cross

2
section is 4m (ij) =3.65barn. hw=FE — E' and K=

k —k/ denote the energy and momentum transfer.
{3¢,F(0)}, and W(Q) are the magnetic form factor and
the Debye—Waller factor of the atom number s in the mag-
netic unit cell. o, f = a,b,c denote the spatial coordinates
and 5,8’ = 1,..., N, number the different atoms in the mag-
netic unit cell.

According to the fluctuation dissipation theorem, the
scattering function S and thus excitation energies and
intensities can be calculated from the absorptive part of
the @ and Q dependent susceptibility y (Q7 ).
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=1 ookt Lap (Q,m)

73 (Q.0) = 3 [£5(Q.0) ~ 74(Q.0)

The central problem is therefore the calculation of the
dynamical susceptibility y. Within the standard model of
rare earth magnetism the approach to this problem is to
make use of the mean field-random phase approximation:
the susceptibility can be calculated from the single ion sus-
ceptibility /S'“glc “"*(®w) and the Fourier transform of the (in
general anrsotropic) two-ion interaction /jj/;(Q) by solving
the following equation.

S = 3 [Bur [ ™ ()],
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The single ion susceptibility in this equation is given by
single ion-s
Xct[fg (CO)
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and the Fourier transform of the two-ion interaction ¢ is
defined as

Q) = Z f:xﬂ(c +ry— (Gl + rs’))e_iQ(GJrrs—(GUrrj,)) (6)
G/

Here the G are the lattice vectors of the Bravais Lattice and
r, is the position of the atom s in the magnetic unit cell, |7)
and |j) denote eigenstates of the ion s as calculated selfcon-
sistently within mean field theory. J* is the angular momen-
tum operator, n; and 7; denote the Boltzmann occupation
numbers of the energy levels £} and E; of this ion, respec-
tively. Brackets (- )Hr T refer to a thermal expectation
value at the temperature T and effective magnetic field
H;,, which is determined selfconsistently by solving the
mean field equations

) St = (G +ry)
Hy,=H,+) pug (7)
G's' ng':uB

In order to evaluate Eqgs. (2)-(6) without producing a
numerical divergence it is necessary to add to i a small
imaginary constant o — hw + ie and insert this into Eq.
(5). The calculation of the dynamical susceptibility is done
by solving Eq. (4) for a series of different values of w. Thus
for each value of w a matrix of dimension 3N, x 3N, has to
be inverted. This has to be done for different values of the
scattering vector Q. In order to minimise the computa-
tional effort and enable the treatment of large magnetic
unit cells a different computational algorithm was devel-
oped, which requires only the solution of one generalised
eigenvalue problem at each scattering vector Q. Thus this
method is similar to the standard approach to lattice
dynamics. It is described in the next section.

3. Algorithm for fast calculation of excitation energies
and intensities

The algorithm is presented in the following way: only
one single ion transition with the excitation energy
A’ = E, — E_ is considered for each ion. For instance, in
case of a Kramer ground state doublet, which is split in
the magnetically ordered state by the mean field, this single
ion excitation energy is the distance between the upper and
lower state of the doublet |+). The general case of more
transitions can be easily formulated: it is only necessary
to redefine s to index every transition of interest in the
different ions of the magnetic unit cell. The algorithm has
been implemented in this more general form in the public
domain program package McPhase [S5]. The user can select
those single ion transitions, which should be considered in
the computation.

For such a single ion transition the single ion susceptibil-
ity reads (compare Eq. (5))

o M M
_single ion-s _ ofp P 8
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with the transition elements

My = (=1, —

B = o ) (1

T, £l ) — )
9)

Note that the 3 x 3 matrices M}, always have one double
degenerate eigenvalue =zero (o =2,3) and one positive
eigenvalue (o = 1), which we denote as y* = (( — |J,| +)(+
ol =)+ (= el +) (F D] =)+ (=] +)(+ ]| =)
(n_ — ny). The problem may be simplified by using the uni-
tary transformation %“ﬁ(@ﬁ%s = 1), which diagonalises
the M}, Note that the matrix M}, and consequently also
U, depend on temperature and magnetic field (both, exter-
nal and molecular field according to Eq. (7)). The temper-
ature dependence is due to the Boltzmann occupation
numbers #; and, in addition, to the temperature variation
of the molecular field leading to a temperature variation
of the single ion eigenstates |7) and energies E}.

Using the transformation matrix %, the single ion sus-
ceptibility (8) may be written as

3
single ion- v
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The first term in Eq. (10) corresponds to energy loss of the
neutron and only this term is considered in the following
(the other term can also be considered — it is just necessary
to add another transition (index s) to the problem with neg-
ative Ay, negative y* and the complex conjugate Matrix U).

S Uy 3 U

oo/ Vol g
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Using the expression (11) for the single ion susceptibility
we multiply Eq. (4) with ,{““g'° () and transform both
sides of the resulting equation with the unitary transforma-

tion 2°[- - U . We get
V 50 5({7’59€ s Y 55 /Zl(m/f
: Z Z "”7[ Z : ”a(Q)
Z&Q, (12)

Now the unitary transform of y is introduced by

g T Y"S/ %S’
P(Q ) = Z ] ”(Q’ ) = (13)
5/); /ryS / VS
Transforming the exchange interaction _¢ in a similar way,
ie.

LEAQ) =D U I QU (14)
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Eq. (12) may be rewritten
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Note that in this express1on (15) the ratio f is equal to +1
if y* is positive and —1 1f J is negative. We deﬁne therefore

the matrix Ay = Jy Yo \/7
¢'d” =11 component of ¥ may be nonzero: First, consider
Eq. (15) for ¢=2,3. It follows directly, that
P55 (Q,m) =0 and ¥ (Q,w) = 0. Second, we use this
result and consider Eq. (15) for ¢/ =2,3:

We show now that only the

5(7 : cpss” / s"s!
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For ¢ = 2,3 this equation gives no further information, but

for ¢ =1 it means, that ¥{;’ (Q,w) and ¥{; (Q, ) must

be either zero or eigenvectors of the matrix dy» =
*

T VLY (Q)/ . As the second case cannot be true

for arbltrary o and Q, we may write ¥ as

P (Q, ) = Sppd o P (Q, ) (17)

Setting ¢ = o =1 in Eq. (15) leads to the RPA equation
from which ¥** (Q, ®) can be determined:

b = 3 [ (O — o) = VFLT VT | ¥ (Q )

s

(18)

Deﬁning* the hermitian matrix Ay = A A — \/ij‘lﬁ
(Q)v/y*"  the following generalised eigenvalue problem
may be solved

> Ayt =hod  Agt’ (19)

Note that in the form given above the matrix A is not po-
sitive definite, but 4 is positive definite, this has to be taken
into account when using the standard algorithm for gener-
alised eigenvalue problems. The solution of the eigenvalue
problem (19) yields the eigenvectors 7 = (t;,t,,...,t.,...)
and eigenvalues 7Zw, (which may be written as the eigen-
value matrix Q,. = J,»hw,). The eigenvalues %w, represent
the excitation energies of the system. Thus Eq. (19) can be
viewed as the analogon to the diagonalisation of the
dynamical matrix in the case of lattice dynamical problems.

The eigenvector matrix 4 provides a umtary transfor-
mation of Eq. (18) (note the relations 7714 =
T'AT =1and AT QT A = A)

_ s o,
O = A T Sw,(hw,. - h(U)(S,-rlea/—Lsm/1_;///3.”'/ pe e (Q7 CL))

mnn
s"rr's"s

(20)
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This equation may be easily inverted to provide the follow-
ing expression for ¥* (Q, w):

qu Q7 ZJ sr hwr _hw) 5”"'7:5 (21)

The standard procedure to avoid divergencies is to substi-
tute %iw with fiw + ie and take the limit for ¢ — 0", Using
Diracs formula

1

li =P
filg o, — ho — ie o, — ho

+ ino(hw, — ho) (22)

we may calculate ¥ which is the unitary transform of y”
(compare Eq. (13)):

Z ”ayoﬁ (Q7 )%7;0'
55 \/_ Ve

1 / /
= 3 [P (Q,w) — lP*SS(Q7 ®)]04761 0511 (23)

lp(;f;:;/ (Q’ w) =

Inserting Eqgs. (21) and (22) into (23) and transforming the
result back using %° and %°" yields the final result for the
dynamical susceptibility:

VS’RZ%‘;IFW(Q)
x 8(hoH(Q) — ho) 71, (Q) ) (24)

In order to get the neutron cross section this result has to
be inserted in Egs. (2) and (3).

The procedure for the calculation of excitation energies
hw, and neutron intensities outlined above is very fast,
because it involves only a diagonalisation (determination
of the matrix ) for every scattering vector of interest. It
is not necessary to calculate the energy dependence of the
dynamical susceptibility saving a lot of computation time.
The price to be paid for this advantage is that in this level
of approximation it is not possible to discuss more complex
response functions than given by Eq. (5). These would be
necessary to describe for example a nonzero intrinsic line-
width of the modes.

A very interesting fact is, that the procedure outlined in
this section may easily be generalised to multipolar interac-
tions just by letting the spacial indices (e.g. o) run not only
from a to ¢ but to the number of multipolar operators
considered. Care must then be taken to take only the com-
ponents o, f = a,b,c of x;}S’(Q,w) when inserting Eq. (24)
into (2) and (3), because neutrons are only probing the
matter by virtue of their spin moment.

ss’ —k
Ly Qo) =7*

4. Conclusion

A general and fast method for the calculation of disper-
sive excitations in rare earth based materials has been devel-
oped. Neutron spectra can easily be calculated in complex
magnetic/orbital structures. Crystal field effects are fully
included. The algorithm presented above has been imple-

mented and tested in the McPhase program package [5T
by comparison with the conventional type of analysis based
on the computation of the full energy dependence of the
dynamical susceptibility as described at the end of section 2.
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Appendix. Stevens operators

A complete list of operators up to / = 6 as introduced by
Stevens [4,6] is given in the following table. In the algo-
rithm developed in this work and used in the program
package McPhase [5] these operators are identified with
J, (o =a,b,c,d,e,...). This notation is convenient for the
analysis of multipolar interactions.

X=JJ+1)
—1
Jo=0Oy =5V -J]=,
010—J
1
Je=0n =5l +J]=J,
Ji= 0, _%[Ji ) =JJ, +JJ, = 2P,
J. =0, 771[‘7 Vs =J) + s =W =5 U+ =
Jp = 0y = [3J7 - X]
1
Jg2021—Z[J(J++J)+(J++J) ] = [JJ+JJ]_ -
J;,:Ozzfé[Jz—ﬁ—Jz] Jr—J?
h=0=Ft
= O = ZVE =W+ L = )]
Oy = (s —J )52 =X —1/2)

4
+ (e =IO X = 1/2) (s~ )]
0 =[5 — (3X — 1)J.]

Os = 3 [U- +7)(1022 ~ 2K ~ 1)
+ (5 =X —1/2)(J; +J)]
Oy :%[(Ji + ).+ T+ T2

1
Oy = Z[Ji +J3]
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Oy =710+ —J )12 = (3X + 1)) + (17 = BX + D)4 —J-))]
Oy = [35J% — (30X — 25)J% 4 3X? — 6X]

Ou :}1[(*’+ +J )12 = (3X + 1))
+ (12 = BX+ 1) +J)]
042 :%[(Ji +J2,)(7J§ —X - 5) +(7J§ _X_S)(Ji +J3)]
Os :%[(J3++J3)JZ+JZ(J1+J§)]
Ou =3[+

—i
0§5 ZT[Ji_Ji]

-1

Oy = [ =)+ 0.1 = 1))

Ohy = Z U2 =) 002 = X =33/2) + (972 =X = 33/0)(% = /)]
o, = _Il (2 = )BT — (X +6)7.) + (3 — (X + 6)J) (2 — )]
0% = (s —J )21 — 142X + X2 — X +3/2) + [}y —J)]

4
Oso = [63J° — (70X — 105)J2 + (15X — 50X + 12)J.]

051 = % (s +J )21 — 142X + X2 — X +3/2)
+ QU 142X + X2 =X +3/2)(J +J )]
Os, = % (V2 +T2)(3T2 — (X +6)J.) + (32 — (X + 6)J.)(J2 +J2)]
Os3 = % (3 +T2)(972 =X —33/2) + (9JF — X —33/2)(JS +J?)]
Osy = % (T4 + T+ LTS +T4)]
Oss :%[Ji+Jf]
O :;[Ji *Ji]
O = L~ P45 )
o, :li[(Ji —JH (112 =X = 38) + (11J7 = X —38)(J% —J*)]

4

O =22 — )12 — (3X + 59)..)

4
+ (1172 — (3X +59)J.)(J3 —J?)]
—i

Opp = 5 (73 = 72){3372 — (18X + 123)72 + X* + 10X + 102}
+{i =)

O = —1[(74 —J){33J5 — (30X — 15)J° + (5X* — 10X + 12)J.}

Y
{3 =70

Ogo = [231J° — (315X — 735)J¢ + (105X* — 525X + 294)J% — 5X°
+40X? — 60X]

Ogt = 411 [+ 47 ){33° — (30X — 15)% + (5X* — 10X + 12)J.}

LU )
L

On =75 (J2 +J2){337¢ — (18X + 123)J2 + X7 + 10X + 102}
+{ ML +I2)]
Og = ! (3 + 7)) (112 — (3X + 59)J.)

4
+ (1172 — (3X +59)J.)(J3 +J7)]

1

Ogs = Z[(Ji +J (T2 =X —38) + (11J2 — X = 38)(J +J%)]
1

Oss =z + )+ (5 +2)]

1
Ogs :5[J3+Jﬁ]
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