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Abstract

An algorithm for the efficient and fast calculation of dispersive magnetic excitations in rare earth based systems has been developed.
Crystal field anisotropy and anisotropy of the two ion interactions can be taken into account. It is based on the standard mean field–
random phase approximation of the problem. In analogy to lattice dynamical calculations the central problem of finding the poles of the
dynamical susceptibility v(Q,x) has been reduced to the diagonalisation of a dynamical matrix. This approach is applicable to complex
magnetic structures, it is fast and easily generalised to include many single ion transitions and orbital interactions.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Many special models have been developed for the calcu-
lation of dispersive excitations in rare earth based systems
(see [1] for an overview). An example is the spin wave
model in ferromagnets, which is valid for negligible single
ion anisotropy. For systems with significant crystal field
anisotropy, pseudo spin models have been used, such as
in the case of the cuprates [2]. Recently systems with large
multipolar interactions have been investigated and isospin
models have been developed to interpret the dispersive
modes, such as in the case of CeB6 [3]. All these special
models are based on or equivalent to the mean field–
random phase approach to the problem. In this article a
very general and fast method for the calculation of disper-
sive excitations in rare earth based systems is presented.
The model is applicable to arbitrary complex magnetic or
orbital structures. Single ion anisotropy, isotropic and
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anisotropic two ion interactions can be treated according
to the following magnetic Hamiltonian Hmag.

Hmag ¼
X

s

Bm
l Om

l ðJsÞ � 1

2

X
ss0ab

J s
aJabðss0ÞJ s0

b

�
X

s

gJslBJsH ð1Þ

The first term describes the crystal field (Stevens operators
Om

l , see the table in the Appendix) [4], the second the mag-
netic two ion interaction, the third the Zeeman energy
describing the effect of the application of an external
magnetic field. The method is easily generalised to the case
of multipolar interactions by identifying the components
(a = a,b,c, . . .) of the angular momentum operator J with
the first order Stevens parameters according to the table
in the Appendix.

2. The mean field–random phase approximation

In order to define the computational problem this sec-
tion is devoted to the description of the standard mean
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field–random phase approximation, which is commonly
used to calculate dispersive magnetic excitations in rare
earth based systems. Neutron spectroscopy is the most
important experimental method for the determination of
these excitations. The following form of the double differ-
ential inelastic neutron cross section of magnetic excita-
tions has been given in [1]1

dr
dXdE0

¼ N
k0

k
�hce2

mc2

� �2X
Q

d~j;Q
X
abss0
ðdab � Q̂aQ̂bÞ

� 1

2
gJ F ðQÞ

� �
s

1

2
gJ F ðQÞ

� �
s0

� e�W sðQÞ�W s0 ðQÞ S
ab
ss0 ðQ;xÞ
2p�hN b

ð2Þ

In Eq. (2) N denotes the number of magnetic atoms in the
sample, k and k 0 the wavevector of the incoming and
scattered neutron, respectively. The total magnetic cross

section is 4p �hce2

mc2

� �2

¼ 3:65 barn. �hx = E � E 0 and ~j ¼
k� k0 denote the energy and momentum transfer.

1
2
gJ F ðQÞ

� 	
s

and Ws(Q) are the magnetic form factor and
the Debye–Waller factor of the atom number s in the mag-
netic unit cell. a,b = a,b,c denote the spatial coordinates
and s, s 0 = 1, . . . ,Nb number the different atoms in the mag-
netic unit cell.

According to the fluctuation dissipation theorem, the
scattering function S and thus excitation energies and
intensities can be calculated from the absorptive part of
the x and Q dependent susceptibility vss0

abðQ;xÞ.

Sab
ss0 ðQ;xÞ ¼

2�h
1� e��hx=kT

v;;ss0

ab ðQ;xÞ

v;;ss0

ab ðQ;xÞ ¼
1

2i
½vss0

abðQ;xÞ � v�s
0s

ba ðQ;xÞ�
ð3Þ

The central problem is therefore the calculation of the
dynamical susceptibility v. Within the standard model of
rare earth magnetism the approach to this problem is to
make use of the mean field–random phase approximation:
the susceptibility can be calculated from the single ion sus-
ceptibility vsingle ion-s

ab ðxÞ and the Fourier transform of the (in
general anisotropic) two-ion interaction Jss0

abðQÞ by solving
the following equation.

dss0dab ¼
X
s00d

½dss00 ½vsingle ion-sðxÞ��1
ad �Jss00

ad ðQÞ�vs00s0

db ðQ;xÞ ð4Þ

The single ion susceptibility in this equation is given by

vsingle ion-s
ab ðxÞ

¼
X

ij

hijJ s
a � hJ s

aiHs
eff
;T jjihjjJ s

b � hJ s
biHs

eff
;T jii

Es
j � Es

i � �hx
ðni � njÞ

ð5Þ
1 http://ntserv.fys.ku.dk/jens/book/book.htm.
and the Fourier transform of the two-ion interaction Jab is
defined as

Jss0

abðQÞ ¼
X

G0
JabðGþ rs � ðG0 þ rs0 ÞÞe�iQðGþrs�ðG0þrs0 ÞÞ ð6Þ

Here the G are the lattice vectors of the Bravais Lattice and
rs is the position of the atom s in the magnetic unit cell, jii
and jji denote eigenstates of the ion s as calculated selfcon-
sistently within mean field theory. Js is the angular momen-
tum operator, ni and nj denote the Boltzmann occupation
numbers of the energy levels Es

i and Es
j of this ion, respec-

tively. Brackets h� � � iHs
eff
;T refer to a thermal expectation

value at the temperature T and effective magnetic field
Hs

eff , which is determined selfconsistently by solving the
mean field equations

Hs
eff ;a ¼ H a þ

X
G0s0

Jabðrs � ðG0 þ rs0 Þ
gJslB

hJ s0

b iHs0
eff
;T ð7Þ

In order to evaluate Eqs. (2)–(6) without producing a
numerical divergence it is necessary to add to �hx a small
imaginary constant �hx! �hx + i� and insert this into Eq.
(5). The calculation of the dynamical susceptibility is done
by solving Eq. (4) for a series of different values of x. Thus
for each value of x a matrix of dimension 3Nb · 3Nb has to
be inverted. This has to be done for different values of the
scattering vector Q. In order to minimise the computa-
tional effort and enable the treatment of large magnetic
unit cells a different computational algorithm was devel-
oped, which requires only the solution of one generalised
eigenvalue problem at each scattering vector Q. Thus this
method is similar to the standard approach to lattice
dynamics. It is described in the next section.
3. Algorithm for fast calculation of excitation energies
and intensities

The algorithm is presented in the following way: only
one single ion transition with the excitation energy
Ds = E+ � E� is considered for each ion. For instance, in
case of a Kramer ground state doublet, which is split in
the magnetically ordered state by the mean field, this single
ion excitation energy is the distance between the upper and
lower state of the doublet j±i. The general case of more
transitions can be easily formulated: it is only necessary
to redefine s to index every transition of interest in the
different ions of the magnetic unit cell. The algorithm has
been implemented in this more general form in the public
domain program package McPhase [5]. The user can select
those single ion transitions, which should be considered in
the computation.

For such a single ion transition the single ion susceptibil-
ity reads (compare Eq. (5))

vsingle ion-s
ab ðxÞ ¼

Ms
ab

Ds � �hx
þ

Ms
ba

Ds þ �hx
ð8Þ
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with the transition elements

Ms
ab � h�jJ s

a � hJ s
aiHs

eff
;T jþihþjJ s

b � hJ s
biHs

eff
;T j�iðn� � nþÞ

ð9Þ

Note that the 3 · 3 matrices Ms
ab always have one double

degenerate eigenvalue = zero (r = 2,3) and one positive
eigenvalue (r = 1), which we denote as cs = (h � jJaj + ih +
jJaj � i + h � jJbj + i h + jJbj � i + h � jJcj + ih + jJcj � i)
(n� � n+). The problem may be simplified by using the uni-
tary transformation Us

abðUsyUs ¼ 1), which diagonalises
the Ms

ab. Note that the matrix Ms
ab and consequently also

Us
ab depend on temperature and magnetic field (both, exter-

nal and molecular field according to Eq. (7)). The temper-
ature dependence is due to the Boltzmann occupation
numbers ni and, in addition, to the temperature variation
of the molecular field leading to a temperature variation
of the single ion eigenstates jii and energies Es

i .
Using the transformation matrix Us

ab the single ion sus-
ceptibility (8) may be written as

vsingle ion-s
ab ðxÞ ¼

X3

r¼1

Us
arc

sdr1U sy
rb

Ds � �hx
þ
UsH

ar ð�1Þcsdr1U sHy
rb

�Ds � �hx

 !

ð10Þ

The first term in Eq. (10) corresponds to energy loss of the
neutron and only this term is considered in the following
(the other term can also be considered – it is just necessary
to add another transition (index s) to the problem with neg-
ative Ds, negative cs and the complex conjugate Matrix U).

vsingle ion-s
ab ðxÞ �

X3

r¼1

Us
arc

sdr1Usy
rb

Ds � �hx
ð11Þ

Using the expression (11) for the single ion susceptibility
we multiply Eq. (4) with vsingle ion-s

ab ðxÞ and transform both
sides of the resulting equation with the unitary transforma-
tion Usy½� � ��Us0 . We get

csdr1drr0dss0

Ds � �hx
¼
X

s00

X3

d¼1

dss00U
s00y
rd �

X3

a00¼1

csdr1U
sy
ra00

Ds � �hx
Jss00

a00dðQÞ
" #

�
X3

b¼1

vs00s0

db ðQ;xÞUs0

br0 ð12Þ

Now the unitary transform of v is introduced by

Ws00s0

r00r0 ðQ;xÞ �
X
db

Us00y
r00dv

s00s0
db ðQ;xÞUs0

br0ffiffiffiffiffiffi
cs00

p H ffiffiffiffiffi
cs0

p ð13Þ

Transforming the exchange interaction J in a similar way,
i.e.

Lss00

rr00 ðQÞ �
X
db

Usy
rdJ

ss00

db ðQÞU
s00

br00 ð14Þ
Eq. (12) may be rewritten

dr1drr0dss0

Ds � �hx

¼
X

s00

X3

r00¼1

dss00drr00

ffiffiffiffi
cs
p Hffiffiffiffi

cs
p � dr1

Ds � �hx

ffiffiffiffi
cs
p

Lss00

rr00 ðQÞ
ffiffiffiffiffiffi
cs00

p H

" #

�Ws00s0

r00r0 ðQ;xÞ ð15Þ

Note that in this expression (15) the ratio
ffiffiffi
cs
p Hffiffiffi

cs
p is equal to +1

if cs is positive and �1 if cs is negative. We define therefore

the matrix Kss0 ¼ dss0
ffiffiffi
cs
p Hffiffiffi

cs
p . We show now that only the

r 0r00 = 11 component of W may be nonzero: First, consider
Eq. (15) for r = 2,3. It follows directly, that
Ws00s0

2r0 ðQ;xÞ ¼ 0 and Ws00s0

3r0 ðQ;xÞ ¼ 0. Second, we use this
result and consider Eq. (15) for r 0 = 2,3:

0 ¼
X

s00
Kss00dr1 �

dr1

Ds � �hx

ffiffiffiffi
cs
p

Lss00

r1 ðQÞ
ffiffiffiffiffiffi
cs00

p H

� �
Ws00s0

1r0 ðQ;xÞ

ð16Þ

For r = 2,3 this equation gives no further information, but
for r = 1 it means, that Ws00s0

12 ðQ;xÞ and Ws00s0

13 ðQ;xÞ must
be either zero or eigenvectors of the matrix dss00 ¼

1
Ds��hx

ffiffiffiffi
cs
p

Lss00

11 ðQÞ
ffiffiffiffiffiffi
cs00

p H

. As the second case cannot be true
for arbitrary x and Q, we may write W as

Ws00s0

r00r0 ðQ;xÞ ¼ dr00r0dr01W
s00s0 ðQ;xÞ ð17Þ

Setting r = r
0
= 1 in Eq. (15) leads to the RPA equation

from which Ws00s0 ðQ;xÞ can be determined:

dss0 ¼
X

s00
Kss00 ðDs � �hxÞ �

ffiffiffiffi
cs
p

Lss00

11 ðQÞ
ffiffiffiffiffiffi
cs00

p H
h i

Ws00s0 ðQ;xÞ

ð18Þ
Defining the hermitian matrix Ass00 ¼ Kss00D

s � ffiffiffiffi
cs
p

Lss00

11

ðQÞ
ffiffiffiffiffiffi
cs00

p H

the following generalised eigenvalue problem
may be solvedX

s0
Ass0 ts0 ¼ �hx

X
s0

Kss0 ts0 ð19Þ

Note that in the form given above the matrix K is not po-
sitive definite, but A is positive definite, this has to be taken
into account when using the standard algorithm for gener-
alised eigenvalue problems. The solution of the eigenvalue
problem (19) yields the eigenvectors T ¼ ðt1; t2; . . . ; tr; . . .Þ
and eigenvalues �hxr (which may be written as the eigen-
value matrix Xrr0 ¼ drr0�hxr). The eigenvalues �hxr represent
the excitation energies of the system. Thus Eq. (19) can be
viewed as the analogon to the diagonalisation of the
dynamical matrix in the case of lattice dynamical problems.

The eigenvector matrix T provides a unitary transfor-
mation of Eq. (18) (note the relations TTyK ¼
TyKT ¼ 1 and KTXTyK ¼ A)

dss0 ¼
X

s00rr0s000s0000
Kss00Ts00rð�hxr � �hxÞdrr0T

y
r0s000Ks000s0000W

s
0000

s0 ðQ;xÞ

ð20Þ
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This equation may be easily inverted to provide the follow-
ing expression for Wss0 ðQ;xÞ:

Wss0 ðQ;xÞ ¼
X

rr0
Tsrð�hxr � �hxÞ�1drr0T

y
r0s ð21Þ

The standard procedure to avoid divergencies is to substi-
tute �hx with �hx + i� and take the limit for �! 0+. Using
Diracs formula

lim
�!0þ

1

�hxr � �hx� i�
¼ P

1

�hxr � �hx
þ ipdð�hxr � �hxÞ ð22Þ

we may calculate W00 which is the unitary transform of v00

(compare Eq. (13)):

W;;ss0

r00r0 ðQ;xÞ ¼
X
bd

Usy
r00dv

;;ss0

db ðQ;xÞUs0

br0ffiffiffiffi
cs
p H

ffiffiffiffiffi
cs0

p
¼ 1

2i
½Wss0 ðQ;xÞ �WHs0sðQ;xÞ�dr00r0dr001 ð23Þ

Inserting Eqs. (21) and (22) into (23) and transforming the
result back using Us and Us0y yields the final result for the
dynamical susceptibility:

v;;ss0

ab ðQ;xÞ ¼
ffiffiffiffi
cs
p H

ffiffiffiffiffi
cs0

p
p
X

r

Us
a1TsrðQÞ

� dð�hxrðQÞ � �hxÞTy
rs0 ðQÞU

s0y
1b ð24Þ

In order to get the neutron cross section this result has to
be inserted in Eqs. (2) and (3).

The procedure for the calculation of excitation energies
�hxr and neutron intensities outlined above is very fast,
because it involves only a diagonalisation (determination
of the matrix T) for every scattering vector of interest. It
is not necessary to calculate the energy dependence of the
dynamical susceptibility saving a lot of computation time.
The price to be paid for this advantage is that in this level
of approximation it is not possible to discuss more complex
response functions than given by Eq. (5). These would be
necessary to describe for example a nonzero intrinsic line-
width of the modes.

A very interesting fact is, that the procedure outlined in
this section may easily be generalised to multipolar interac-
tions just by letting the spacial indices (e.g. a) run not only
from a to c but to the number of multipolar operators
considered. Care must then be taken to take only the com-
ponents a,b = a,b,c of v;;ss0

ab ðQ;xÞ when inserting Eq. (24)
into (2) and (3), because neutrons are only probing the
matter by virtue of their spin moment.
2 www.mcphase.de.
4. Conclusion

A general and fast method for the calculation of disper-
sive excitations in rare earth based materials has been devel-
oped. Neutron spectra can easily be calculated in complex
magnetic/orbital structures. Crystal field effects are fully
included. The algorithm presented above has been imple-
mented and tested in the McPhase program package [5]2

by comparison with the conventional type of analysis based
on the computation of the full energy dependence of the
dynamical susceptibility as described at the end of section 2.
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Appendix. Stevens operators

A complete list of operators up to l = 6 as introduced by
Stevens [4,6] is given in the following table. In the algo-
rithm developed in this work and used in the program
package McPhase [5] these operators are identified with
Ja (a = a,b,c,d,e, . . .). This notation is convenient for the
analysis of multipolar interactions.
X ¼ JðJ þ 1Þ
O00 ¼ 1

J a ¼ Os
11 ¼

�i

2
½Jþ � J�� ¼ J y

J ¼ O ¼ J
b 10 z

J c ¼ O11 ¼
1

2
½Jþ þ J�� ¼ J x

J d ¼ Os
22 ¼

�i

2
½J 2
þ � J 2

�� ¼ J xJ y þ JyJx ¼ 2P xy

J ¼ Os ¼ �i ½J ðJ � J Þ þ ðJ � J ÞJ � ¼ 1 ½J J þ J J � ¼ P
e 21 4
z þ � þ � z

2
y z z y yz

J f ¼ O20 ¼ ½3J 2
z � X �

J g ¼ O21 ¼
1

4
½J zðJþ þ J�Þ þ ðJþ þ J�ÞJ z� ¼

1

2
½JxJ z þ JzJx� ¼ P xz

J h ¼ O22 ¼
1

2
½J 2
þ þ J 2

�� ¼ J 2
x � J 2

y

J i ¼ Os
33 ¼

�i

2
½J 3
þ � J 3

��

s �i 2 2 2 2
� � � ¼ O32 ¼ 4
½ðJþ � J�ÞJz þ JzðJþ � J�Þ�

Os
31 ¼

�i

4
½ðJþ � J�Þð5J 2

z � X � 1=2Þ

þ ðJþ � J�Þð5J 2
z � X � 1=2ÞðJþ � J�Þ�

O30 ¼ ½5J 3
z � ð3X � 1ÞJz�

O31 ¼
1

4
½ðJþ þ J�Þð10J 2

z � 2X � 1Þ

þ ð5J 2
z � X � 1=2ÞðJþ þ J�Þ�

O32 ¼
1

4
½ðJ 2
þ þ J 2

�ÞJz þ JzðJ 2
þ þ J 2

�Þ�

O33 ¼
1

2
½J 3
þ þ J 3

��
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Os
44 ¼

�i

2
½ðJ 4
þ � J 4

��

Os
43 ¼

�i

4
½ðJ 3
þ � J 3

�ÞJz þ J zðJ 3
þ � J 3

�Þ�

Os
42 ¼

�i

4
½ðJ 2
þ � J 2

�Þð7J 2
z � X � 5Þ þ ð7J 2

z � X � 5ÞðJ 2
þ � J 2

�Þ�

Os
41 ¼

�i
4
½ðJþ � J�Þð7J 3

z � ð3X þ 1ÞJ zÞ þ ð7J 3
z � ð3X þ 1ÞJzÞðJþ � J�Þ�

O40 ¼ ½35J 4
z � ð30X � 25ÞJ 2

z þ 3X 2 � 6X �

O41 ¼
1

4
½ðJþ þ J�Þð7J 3

z � ð3X þ 1ÞJzÞ
þ ð7J 3

z � ð3X þ 1ÞJzÞðJþ þ J�Þ�

O42 ¼
1

4
½ðJ 2
þ þ J 2

�Þð7J 2
z � X � 5Þ þ ð7J 2

z � X � 5ÞðJ 2
þ þ J 2

�Þ�

O43 ¼
1

4
½ðJ 3
þ þ J 3

�ÞJz þ JzðJ 3
þ þ J 3

�Þ�

O44 ¼
1

2
½ðJ 4
þ þ J 4

��

Os
55 ¼

�i

2
½J 5
þ � J 5

��

Os ¼ �i ½ðJ 4 � J 4 ÞJ þ J ðJ 4 � J 4 Þ�
54 4 þ � z z þ �

Os
53 ¼

�i

4
½ðJ 3
þ � J 3

�Þð9J 2
z � X � 33=2Þ þ ð9J 2

z � X � 33=2ÞðJ 3
þ � J 3

�Þ�

Os
52 ¼

�i

4
½ðJ 2
þ � J 2

�Þð3J 3
z � ðX þ 6ÞJzÞ þ ð3J 3

z � ðX þ 6ÞJzÞðJ 2
þ � J 2

�Þ�

Os
51 ¼

�i

4
½ðJþ � J�Þf21J 4

z � 14J 2
z X þ X 2 � X þ 3=2g þ f� � �gðJþ � J�Þ�

O50 ¼ ½63J 5
z � ð70X � 105ÞJ 3

z þ ð15X 2 � 50X þ 12ÞJz�

O51 ¼
1

4
½ðJþ þ J�Þð21J 4

z � 14J 2
z X þ X 2 � X þ 3=2Þ

þ ð21J 4
z � 14J 2

z X þ X 2 � X þ 3=2ÞðJþ þ J�Þ�

O52 ¼
1

4
½ðJ 2
þ þ J 2

�Þð3J 3
z � ðX þ 6ÞJzÞ þ ð3J 3

z � ðX þ 6ÞJzÞðJ 2
þ þ J 2

�Þ�

O53 ¼
1

4
½ðJ 3
þ þ J 3

�Þð9J 2
z � X � 33=2Þ þ ð9J 2

z � X � 33=2ÞðJ 3
þ þ J 3

�Þ�

O54 ¼
1

4
½ðJ 4
þ þ J 4

�ÞJz þ JzðJ 4
þ þ J 4

�Þ�

O55 ¼
1

2
½J 5
þ þ J 5

��

Os
66 ¼

�i

2
½J 6
þ � J 6

��

s �i 5 5 5 5
O65 ¼ 4
½ðJþ � J�ÞJz þ J zðJþ � J�Þ�

Os
64 ¼

�i

4
½ðJ 4
þ � J 4

�Þð11J 2
z � X � 38Þ þ ð11J 2

z � X � 38ÞðJ 4
þ � J 4

�Þ�
Os
63 ¼

�i

4
½ðJ 3
þ � J 3

�Þð11J 3
z � ð3X þ 59ÞJzÞ

þ ð11J 3
z � ð3X þ 59ÞJ zÞðJ 3

þ � J 3
�Þ�

Os
62 ¼

�i

4
½ðJ 2
þ � J 2

�Þf33J 4
z � ð18X þ 123ÞJ 2

z þ X 2 þ 10X þ 102g

þ f� � �gJ 2
þ � J 2

�Þ�

Os
61 ¼

�i

4
½ðJþ � J�Þf33J 5

z � ð30X � 15ÞJ 3
z þ ð5X 2 � 10X þ 12ÞJ zg

þ f� � �gðJþ � J�Þ�
O60 ¼ ½231J 6

z � ð315X � 735ÞJ 4
z þ ð105X 2 � 525X þ 294ÞJ 2

z � 5X 3

þ 40X 2 � 60X �

O61 ¼
1

4
½ðJþ þ J�Þf33J 5

z � ð30X � 15ÞJ 3
z þ ð5X 2 � 10X þ 12ÞJ zg

þ f� � �gðJþ þ J�Þ�

O62 ¼
1

4
½ðJ 2
þ þ J 2

�Þf33J 4
z � ð18X þ 123ÞJ 2

z þ X 2 þ 10X þ 102g

þ f� � �gðJ 2
þ þ J 2

�Þ�

O63 ¼
1

4
½ðJ 3
þ þ J 3

�Þð11J 3
z � ð3X þ 59ÞJzÞ

þ ð11J 3
z � ð3X þ 59ÞJ zÞðJ 3

þ þ J 3
�Þ�

O64 ¼
1

4
½ðJ 4
þ þ J 4

�Þð11J 2
z � X � 38Þ þ ð11J 2

z � X � 38ÞðJ 4
þ þ J 4

�Þ�

O65 ¼
1

4
½ðJ 5
þ þ J 5

�ÞJz þ JzðJ 5
þ þ J 5

�Þ�

O66 ¼
1

2
½J 6
þ þ J 6

��
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