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Effect of pressure on 2-magnon Raman scattering in K2NiF4 
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Abstract 

We measured the effect of pressure (P~< 10 GPa) on 2-magnon excitations (T= 10 K) and on lattice parameters 
( T = 300 K) of K2NiF 4 by Raman spectroscopy and X-ray diffraction respectively. The results allow us to determine the 
dependence of the superexchange interaction J on the transition metal to anion distance d. We find that J scales as joc d " 
with n=9.5_+0.5. Previous measurements of 2-magnon excitations under pressure in NiO (n= 7-8), La2CuO~ and 
Eu2CuO 4 (n = 5-6) are analyzed and an explanation for the trends in the pressure dependence of the superexchange inter- 
action J is proposed. 

The pressure dependence of the superexchange 
integral J in the antiferromagnets L a 2 C u O  4 and 
Eu2CuO4 [1, 2] reveals an anomalous scaling of J with 
cation-anion (Cu-O) distance d: Jocd  -5+2. This 
behavior contradicts the empirical expression 
Jcc d I1 + ! [3, 4], which was derived from an analysis of 
previous data on the superexchange integral in various 
antiferromagnetic compounds. K2NiF4 is a prototype 
antiferromagnet with crystal structure analogous to 
LazCuO 4. Its Neel temperature is T N = 97.1 K [5]. In 
K2NiF  4 the perovskite-like layers of KNiF 3 are separ- 
ated by planes of KF. This makes the antiferromagnetic 
interaction essentially two dimensional. Two-magnon 
Raman scattering in KzNiF4 is well described by the 
spin-wave theory [6] in the Green-function formalism 
for an S--1 antiferromagnet. Thus, the frequency of 
the 2-magnon Raman line is proportional to the super- 
exchange integral J. We measured 2-magnon Raman 
scattering under pressure in KzNiF 4 in order to deter- 
mine the pressure dependence of J. We also deter- 
mined the pressure dependence of the lattice 
parameters of K2NiF 4 using X-ray diffraction. These 
measurements allow us to determine the J(d) depen- 
dence, which we compare with that of La2CuO 4 [1], 
E u 2 C u O  4 [2] and NiO [7, 8]. We propose an explana- 
tion for the observed trends in the J(d) dependences in 
these antiferromagnets, which is based on the theoreti- 
cal model of ref. 9. 

The compound KzNiF 4 cannot be grown directly 
from the melt. Samples were prepared in a manner 
analogous to that described in ref. 10. For Raman 
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measurements good optical quality wafers (100x 
100 x 30 ~m 3) were placed in a gasketed diamond- 
window high-pressure cell [ 11 ]. Condensed helium was 
used as a pressure transmitting medium in order to 
ensure the best possible hydrostatic conditions at low 
temperatures. The pressure in the cell was only 
changed at room temperature, and then the cell was 
cooled down to 10K. Low-temperature Raman 
spectra were measured with a multichannel spectrom- 
eter system. 

For X-ray diffraction investigations the crystals were 
powdered. Samples were placed in a 4:1 methanol- 
ethanol pressure medium. The powder pattern was 
observed down to a d-spacing of 1.4 ,/k using an angle- 
dispersive diffraction geometry (Debye-Scherrer 
method, filtered Mo K a  radiation) and a position- 
sensitive proportional counter system. Experimental 
errors in absolute lattice parameters are estimated to 
be about 0.2%. The ruby luminescence method with 
calibration according to ref. 12 was used to measure 
the pressure in Raman as well as in X-ray diffraction 
studies. 

The lattice parameters of K2NiF 4 under normal con- 
ditions are a0=4.008(2)A and %= 13.064(2)A. The 
pressure-volume data are well fitted by a Murnaghan 
equation of state [13] with bulk modulus B 0 = 56.3(25) 
GPa and its derivative B0'=5.7(10). The pressure 
dependence of d(Ni-F) is given by the pressure 
dependence of the lattice parameter a which is also 
well fitted by a Murnaghan-like equation a(P)=a o- 
[1 +(Ko'/Ko)P] -~/~;', P is the pressure in gigapascals, 
using K 0 = 183(4)GPa, K0 '=  18. 

Figure 1 shows 2-magnon Raman spectra of K2NiF ~ 
at several pressures. The pressure dependence of the 
2-magnon Raman line is shown in Fig. 2. This depen- 
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Fig. 1. Raman spectra of KENiF 4 (T = 10 K) at different pres- 
sures, showing the shift of the 2-magnon Raman fine. 
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Fig. 3. Logarithmic plot of n = - ln (J /Jo) / ln (d /do)  vs. ln( d/do) for  
several antiferromagnets. For NiO full symbols are from ref. 8, 
open symbols are from ref. 7. 
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Fig. 2. Frequency of the 2-magnon Raman line in K:NiF 4 as a 
function of pressure ( T = 10 K). 

dence is found to be essentially linear (pressure coeffi- 
cient 22.7 (1.4) cm -l  GPa-  1). 

In order to compare previous results with ours we 
use the coordinates x = ln(d/d  o), y = - l n ( J / J o ) / l n ( d / d o )  
and show the corresponding data for K2NiF4, NiO [7, 
8], La2CuO4 [1] and E u 2 C u O  4 [2] in Fig. 3. In their 
interpretation of the pressure dependence of J for NiO, 
Massey et  al. [8] used early compressibility data [14]. 
We have corrected these P - V  data using Decker's [15] 
equation of state for NaC1, and have used corrected 
values of the bulk modulus of NiO (B0 = 170 GPa), and 
its pressure derivative (B0 '=  4). In the case of La2CuO 4 
we have used the results of Aronson et al. [1] without 
any corrections. For E u 2 C u O  4 the situation with 
respect to compressibility data is most uncertain. The 
in-plane linear compressibility of Eu2CuO 4 is 

estimated to be k =  - 1.3 x 10 -3 GPa -~ based on the 
results for Nd2CuO 4 [16]. Another  estimate is to take 
the linear compressibility of the in-plane lattice param- 
eter a for La2CuO 4 in the orthorhombic phase [17] 
k --- - 1.5 × 10 -3 GPa-  1, which is in fact quite close to 
the previous value. Because of this uncertainty the data 
for E u 2 C u O  4 are  to be considered with some caution. 
As can be seen from Fig. 3, we cannot describe the 
experimental results with a single scaling law joc d-" ,  
where n = 10-12, as was proposed earlier for the 
superexchange interaction [3, 4]. This even holds if we 
take into account the uncertainties in the compressi- 
bilities. 

The pressure dependence of J can be discussed in 
terms of the superexchange interaction as derived from 
an effective Hubbard Hamiltonian [9]: 

4 t 4 ( ~  1)  +X (1) 

A is the charge transfer gap, U is the Mot t -Hubbard  
gap, t'~ A, U is the p-d matrix element. It is assumed 
that the Hubbard U is independent of pressure, and 
that t scales as t ~c d -  4. 

If one places the three insulators K2NiF4, NiO and 
LaeCuO 4 on the well known Zaanen-Sawatzky-Allen 
diagram [18], see Fig. 4, then LazCuO 4 and other 
cuprates will be in the region of the charge-transfer 
insulators, for which A < U, NiO will be close to the 
intermediate region A = U, and K2NiF 4 will be situated 
in the A >  U region of the diagram, being a 
Mot t -Hubbard  insulator. Here we have used for 
LaeCuO 4 and NiO the parameter values from refs. 19 
and 20. The A and U values for K2NiF 4 were deter- 
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Fig. 4. Zaanen-Sawatzky-Allen diagram. The line A = U divides 
the charge-transfer insulators from Mort-Hubbard insulators. W 
is the p-bandwidth, w is the d-bandwidth. 

mined using cation and anion systematics as given by 
Zaanen and Sawatzky [20, 21]. It is clear from Fig. 3 
that the deviation from the empirical Bloch law 
joc d - l °  [4] correlates with the value of the charge- 
transfer gap, see Fig. 4. More specifically, the power n 
is lower for lower values of the charge-transfer gap. 
This correlation becomes plausible in the framework 
of the ionic model [22], taking into account the 
Madelung energies of the initial and final states of the 
charge-transfer transition. Quantitative treatment of A 
is not possible at present, but for model purposes we 
will use an approach proposed by Ohta et al. [23]: 

A = AEmad/~o~ -- E1 i -  E A  i -  e2/d (2) 

A Ema a is the difference in Madelung energies at cation 
and anion sites, e o~ is the dielectric constant at frequen- 
cies higher than the frequency of the charge-transfer 
transition, E1 i is the ionization potential of the cation, 
and EA i is the electron affinity of the anion. The eZ/d 
term accounts for the Coulomb interaction of an 
electron and a hole, introduced by the charge-transfer 
transition, d is the cation-anion distance. El i and EA i 
are pressure independent and we expect that the major 
contribution to the pressure dependence comes from 
the Madelung potential and the term eZ/d. Coulomb 
terms scale with distance as d -  1, but owing to the term 
Eli+ EA i in eqn. (2), which partly compensates for the 
Coulomb terms, the effective scaling of the charge- 
transfer gap is A ec d -  % where m > 1. The value of m 
becomes larger when absolute values of the Coulomb 
terms and the term Eli+ EA i become nearly equal in 
magnitude, thus reducing the charge-transfer gap. This 
explains qualitatively the systematic variation of the J 

scaling coefficient with the charge-transfer gap (see 
eqn. (1)). For a smaller charge-transfer gap the scaling 
coefficient m is larger and the resulting scaling coeffi- 
cient n for J is reduced. Moreover, the scaling coeffi- 
cient m of A also varies with d and this makes it 
impossible to describe the J(d) dependence with the 
single exponent n. 

Summing up, the Bloch empirical law joc d -10 is 
approximately valid for K2NiF4, but it is not valid for 
cuprates or for NiO. Using a perturbative expression 
for the superexchange interaction [19] and an ionic 
model [23], we find that the pressure dependence of 
the charge-transfer gap A explains the observed trends 
in the J(d) dependence in the compounds considered 
here. It is worth noting that recent results on CoO [24], 
which has A = 7 . 2  eV [20], give a joc d-8 -+0.5 depen- 
dence. This is consistent with the interpretation given 
in this work, because CoO has a value of charge- 
transfer gap intermediate between those of NiO and 
K2NiF4, and its scaling coefficient n = 8 + 0.5 also has 
an intermediate value between n--7.5 for NiO and 
n = 9.5 for K2NiF 4. 
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