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ductivity. The fact that the density of states does not 
change around the Fermi level enforces the idea of a 
non-BCS model for NaAlSi but does not prove it. A 
thorough study will be required to determine what the 
dominant factors are which determine Tc in analogs of 
iron superconductors. 

In a different project [7], we observed bulk 
superconductivity with Tc = 0.6 K in the intermetallic 
compound HfCuGe2 (Fig. 1), which is structurally 
related to the “1111” Fe-based superconductors but 
contains only nonmagnetic elements. These findings 
indicate that superconductivity tends to run in certain 
structure types, and the observed very low Tc supports 
the argument that the presence of magnetic Fe is 
important for obtaining enhanced Tc in this family.  

Fig. 2: Specific heat anomaly of the type-II 
superconducting clathrate Ba8-xSi46 [12] in magnetic
fields. The inset shows the upper critical field Bc2(T) 
determined from the midpoint temperatures of the
transition steps in the measured magnetic fields.  

Germanide and silicide superconductors 

Another complex is the advanced investigation of 
superconducting Pt-Ge compounds with filled 
skutterudite structure (general formula MPt4Ge12, M = 
Sr, Ba, La, Pr). While basic superconducting proper-
ties are known, the order parameters are still under 
debate for the most prominent members LaPt4Ge12 
and PrPt4Ge12. (cf. Scientific Report MPI-CPFS 2009-
2010, p.59-62). For high-quality single crystals of  
PrPt4Ge12, high-resolution data of the penetration 
depth (obtained by the MPI partner group at Zhejiang 
University, China) as well as specific heat data can be 
consistently described by a multigap model [8].  

The new metastable silicide and germanide super-
conductors CaGe3, CaSi3, YSi3, and LuSi3 obtained by 
high-pressure high-temperature syntheses were 
investigated [9,10]. In addition, the superconducting 
parameters of the new cage compounds Ba3Ge13Ir4 

and Ba3Ge13Rh4 were determined [11]. For the type-I 
clathrate Ba8-xSi46, the focus was on enhancing the 
thermoelectric properties, but also the supercon-
ducting properties were investigated (cf. Fig. 2) [12].  

Boride superconductors 

In a large international collaboration, the novel boride 
FeB4 was studied [13]. Remarkably, its existence and 
superconductivity were successfully predicted before 
the synthesis of samples at high pressure. The 
obtained single crystals proved to be highly 
incompressible and superconducting below a Tc of 
2.9 K. FeB4 is a rare example of a conventional 
electron-phonon coupling superconductor with iron.  

A remarkable -electron superconductor 

Another superconductor with both exotic and 
otherwise very conventional aspects is a Bi-Te-Cl 
compound synthesized in the group of M. Ruck (MPI-
CPfS and TU Dresden). Te4[Bi0.74Cl4] is a one-
dimensional metal [14] with structural similarities to 
the organic superconductors of the (TMTSF)2X 
family. In the incommensurately modulated structure, 
the Te species form stacks of  electron systems, 
leading to high electrical conductivity. The compound 
undergoes a superconducting transition at 7.15 K. 
Recently, we collected evidence that the 
superconducting state of this structurally complex 
material is surprisingly simple. It is a type-I 
superconductor with a single s-wave energy gap and 
strong electron-phonon coupling.  
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