Korrelierte Quanten-Hall-Physik in der dritten Dimension

26. November 2020

Der Quanten-Hall-Effekt gehört zu den bekanntesten Beispielen für ein Quantenphänomen, das in einem wirklich makroskopischen Maßstab auftritt. Aufgrund seiner Robustheit ist der Quanten-Hall-Effekt für Anwendungen von enormer Bedeutung. Es wird heutzutage beispielsweise als „Goldstandard“ zur Messung elektrischer Widerstände verwendet. Noch wichtiger ist, dass der Quanten-Hall-Effekt als Drosophila für die topologische Physik angesehen werden kann und, dass zahlreiche topologische Materiezustände verstanden werden können, die auf den grundlegenden Erkenntnissen aufbauen, die im Zusammenhang mit den Quanten-Hall-Effekten in den letzten Jahrzehnte gewonnen wurden.

Traditionell wurde der Quanten-Hall-Effekt ausschließlich mit zweidimensionalen Metallen in Verbindung gebracht. Jetzt haben Wissenschaftler am Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden, an der Technischen Universität Dresden, am Brookhaven National Laboratory in New York, am Helmholtz-Zentrum Dresden-Rossendorf, an der Universität der Chinesischen Akademie der Wissenschaften und am Würzburg-Dresden Excellenzcluster ct.qmat einen neuen stark korrelierten elektronischen Zustand in einem dreidimensionalen Metall entdeckt, der ein enger Verwandter des zweidimensionalen Quanten-Hall-Zustands ist.

Hall-Widerstand (Resistivity) als Funktion des Magnetfelds (Magnetic Field) bei 2 K in Einheiten der Planck-Konstante h, der Elementarladung e und des Fermi-Wellenvektors entlang des Magnetfelds kF,z.

Das Team fand Signaturen eines unkonventionellen Hall-Effekts im Quantenlimit des Bulk-Metalls HfTe5, der neben dem dreidimensionalen Quanten-Hall-Effekt eines einzelnen Elektronenbandes bei niedrigen Magnetfeldern auftritt. Die zusätzliche plateau-artigen Signaturen in der Hall-Leitfähigkeit des niedrigsten Landau-Niveaus wird von einem Shubnikov-de-Haas-Minimum im longitudinalen elektrischen Widerstand begleitet, und skaliert mit 3/5 auf die Höhe des letzten Plateaus des dreidimensionalen Quanten Hall-Effekt. Die Ergebnisse stimmen mit starken Elektron-Elektron-Wechselwirkungen überein, die eine unkonventionelle Variante

Angesichts der Tatsache, dass topologische Zustände der Materie für unser Verständnis zweidimensionaler Systeme von größter Bedeutung waren, versprechen diese neuen Erkenntnisse aufregende zukünftige Erkenntnisse. Die Untersuchung der neuartigen Eigenschaften der Quanten-Hall-Physik in dreidimensionalen Metallen könnte es Wissenschaftlern nicht nur ermöglichen, besser zu verstehen, wie weit sich das mysteriöse Reich der Quanten-Hall-Physik ausbreitet, sondern auch die Erforschung stark korrelierter topologischer Zustände in dreidimensionalen Materialien im Allgemeinen vorantreiben.

Zur Redakteursansicht