A review of inorganic thermoelectric materials

March 22, 2022

This paper presents tables of key thermoelectric properties, which define thermoelectric conversion efficiency, for a wide range of inorganic materials. The twelve families of materials included in these tables are primarily selected on the basis of well established, internationally-recognized performance and promise for current and future applications: tellurides, skutterudites, half Heuslers, Zintls, Mg–Sb antimonides, clathrates, FeGa3-type materials, actinides and lanthanides, oxides, sulfides, selenides, silicides, borides and carbides. As thermoelectric properties vary with temperature, data are presented at room temperature to enable ready comparison, and also at a higher temperature appropriate to peak performance. An individual table of data and commentary are provided for each family of materials plus source references for all the data.

Robert Freer, Dursun Ekren, Tanmoy Ghosh, Kanishka Biswas, Pengfei Qiu, Shun Wan, Lidong Chen, Shen Han, Chenguang Fu, Tiejun Zhu, A. K. M. Ashiquzzaman Shawon, Alexandra Zevalkink, Kazuki Imasato, G. Jeffrey Snyder, Melis Ozen, Kivanc Saglik, Umut Aydemir, Raúl Cardoso-Gil, Eteri Svanidze, Ryoji Funahashi, Anthony V. Powell, Shriparna Mukherjee, Sahil Tippireddy, Paz Vaqueiro, Franck Gascoin, Theodora Kyratsi, Philipp Sauerschnig, and Takao Mori, "Key properties of inorganic thermoelectric materials - tables (version 1)," Journal of Physics: Energy 4 (2), 1-130 (2022).

 

Other Interesting Articles

Go to Editor View