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During the last three years our department has started to put substantial effort to study transition metal 

oxide based catalysts and battery materials using synchrotron radiation. Our objective is to determine the 

local electronic states of the transition metal ions during the various steps of the operational process.  Here 

we made use of our long-time expertise in soft and hard x-ray absorption spectroscopy: expertise not only 

in how to experimentally obtain reliable data but especially in how to analyze the spectra in terms of 

configuration-interaction calculations that include the full atomic multiplet theory, in combination also 

with our extensive database of reference spectra. We collaborated closely with external partners who are 

specialists in catalyst and battery research. We selected the systems based on our experience and 

expectations with transition metal compounds, and in most of the times we were indeed able to extract 

detailed information concerning the charge (valence), orbital, and/or spin state of the ions.  Our research 

efforts in this field have resulted in more than 40 publications in the 2018-2021 census period; 26 of them 

are in journals with IF  12, see our references [1-26].

A project that perhaps illustrates best our ambitions is 

our in-operando soft x-ray absorption spectroscopic 

study on a Co catalyst (Jing Zhou, Linjuan Zhang, 

Yu-Cheng Huang, Chung-Li Dong, Hong-Ji Lin, 

Chien-Te Chen, Liu Hao Tjeng, and Zhiwei Hu [22]). 

We have carried out in the recent past extensive 

investigations to the electronic structure of many 

cobalt oxide based solid state materials, see for 

example refs. [27-35]. These materials have generated 

considerable attention in the scientific community due 

to their complex and large diversity of physical 

phenomena, such as metal-insulator transitions, 

superconductivity, large magnetoresistance, and high 

thermoelectric power. This richness of electronic and 

magnetic properties is closely related not only to the 

possibility of stabilizing cobalt in different valence 

states (2+, 3+, and 4+) but also to the so-called spin-

state degree of freedom. For example, in an octahedral 

coordination, Co3+ and Co4+ ions, which have the 

formal d6 and d5 configurations, respectively, can exist 

in three possible spin states: a high-spin (HS) state, a 

low-spin (LS) state, and even an intermediate-spin (IS) 

state. We were quite successful in determining the 

charge, spin, and orbital states of many of these 

complex cobalt oxide materials [27-35], and we were 

therefore ready to take up the challenge to investigate 

the electronic structure of Co oxides that are being 

utilized in catalytic processes. In particular, we would 

like to utilize soft x-ray absorption spectroscopy since 

this is our main method by which we were able to 

determine the charge, spin, and orbital states 

successfully. 

To identify the active sites and the reaction mechanism 

in a catalytic process, it is highly desirable to determine 

the local electronic structure of the participating ions 

during the electrochemical reaction. To carry out such 

an in-operando soft x-ray experiment is, however, far 

from trivial. It is a major challenge to overcome the 

limitations set by the extremely short mean free paths 

of the soft x-rays and various other signals that are 

representative for the absorption process. 

Nevertheless, we have succeeded in constructing a 

device that allows such an in-operando soft x-ray 

experiment. The device is described below in the 

Experimental Method section.  

In figure (a) below, we present the O–K spectra of 

Li2Co2O4 in-operando as a function of the number of 

scans (taken within 2 min for each scan) at an applied 

voltage of 1.6 V. One can clearly observe that the 

spectral intensities of peaks labelled as β and γ increase 

quickly at the expense of peak  and reached a steady-

state value after 20 min. In figure (b) on page 2, we 

show the steady-state spectra as a function of applied 

voltage. The inset displays the cycle voltammograms 

of Li2Co2O4, revealing that the material becomes fully 

OER active at 1.6 V. 
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To interpret the spectra, we make use of our extensive 

database, which include spectra of Li0.66CoO2 (Co3.34+), 

Na0.5CoO2 (Co3.5+), and BaCoO3 (LS Co4+). The single 

peak  in the spectrum of pristine Li2Co2O4 can be 

assigned to a transition from the O 1s core level to the 

unoccupied 3d-eg state of a LS Co3+, while the two 

additional peaks β and γ at lower energies are due to 

transitions to the unoccupied 3d-t2g and 3d-eg orbitals 

of a LS Co4+ ion, respectively. 

The increase in the spectral intensities of the β and γ 

features during the OER thus indicates that there is a 

transition from a Co3+ state to a Co4+ state in the 

Li2Co2O4 catalyst during the electrochemical reaction. 

The Co4+ content can be estimated by constructing a 

weighted sum of the spectrum of pristine Li2Co2O4 and 

that of BaCoO3. We obtained a Co3.4+ valence state in 

Li2Co2O4 under an applied voltage of 1.6 V and Co3.2+ 

at 1.4 V. Below an applied voltage of 1.4 V there is no 

Co4+ and the material is not OER active as shown in 

the cycle voltammograms (inset of figure b). 

We have carried out further measurements, after the 

OER, at the O-K edge using the in-vacuo total electron 

yield method (TEY) which is much more surface 

sensitive, and found the same steady-state spectrum as 

with TFY during OER. This confirms that the TFY 

signal is representative for the active region for the 

OER reaction. In the Experimental Method section we 

can provide a quantitative estimate that ~80% of the 

TFY signal originates indeed from this region. 

To double check our findings, we have also carried out 

measurements at the Co-L2,3 edge using the in-

operando TFY. The figure (c) on the top right shows 

that there is a shift in the Co-L2,3 spectrum towards 

higher energies when comparing the Li2Co2O4 under 

OER condition (1.6 V applied voltage) with the as-

prepared Li2Co2O4 (pristine), indicating again an 

increase in the Co valence. We have also quantitatively 

analyzed these spectra in terms of a weighted sum of 

the theoretical LS Co3+ and LS Co4+ spectra. We found 

60% Co3+ and 40% Co4+, i.e., an LS Co3.4+ state, which 

is fully consistent with the O–K data. 

To summarize, our in-operando soft x-ray absorption 

measurements demonstrate that a substantial fraction 

of the Co ions undergoes a voltage-dependent and 

time-dependent valence state transition from Co3+ to 

Co4+. A delithiation process is thus taking place. Since 

we have not detected the presence of any IS Co3+ 

species in our spectra, we infer that it is the highly 

oxidized Co4+ site, rather than the Co3+ site or perhaps 

the oxygen vacancy site, that is mainly responsible for 

the high OER activity. It is exciting that our findings 

contradict the commonly accepted IS Co3+ or (eg)1 

scenarios but further research on other systems will be 

needed. 

Experimental Method: 

The in-operando soft x-ray absorption spectroscopy 

(XAS) experiments at the O–K and Co-L2,3 edges were 

carried out at the 11A beam line of the National 

Synchrotron Radiation Research Center in Taiwan 

using the total fluorescence yield (TFY) mode. NiO 

and CoO single crystals were recorded simultaneously 

in a separate ultrahigh vacuum chamber to serve as 

energy references for the O–K and Co-L2,3 edges, 

respectively. 

The Li2Co2O4 catalyst powder was dispersed in ethanol 

and deionized water and then sonicated for 30 min. The 

ink was dropped into a thin membrane window 

(100 nm silicon nitride with a 1 × 1 mm2 area coated 

by 3 nm Ti/10 nm Au from Silson Ltd) with a loading 

mass of ~1 mg cm−2. This window was used as the 

working electrode and to separate the liquid and the 

ultrahigh vacuum environment. The experiments were 

performed using an in situ electrochemical liquid cell 

equipped with three electrodes (working, reference, 

and counter electrodes) under control by a VersaSTAT 

3 potentiostat from Princeton Applied Research. Two 
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platinum wires were used as the reference and counter 

electrodes. Here, we selected a Pt pseudoreference 

electrode due to space constrictions in the 

electrochemical cell and calibrated the potential to 

RHE following the Kasem-Jones procedure. Freshly 

prepared O2-saturated 1.0 M KOH was used as the 

electrolyte, and the electrochemical liquid cell system 

also contained a liquid pump, an inlet, and an outlet 

tube for the electrolyte flow. All electrode potentials 

were referred to RHE. 

TFY was used as the detection method for the 

absorption signal in the XAS experiments. A photon 

escape depth of ~200 nm is sufficiently large to 

overcome the liquid region and the membrane 

separating the liquid from the ultrahigh vacuum. The 

particle size and distribution of Li2Co2O4 nanoparticles 

used in the experiments were determined by high-

resolution transmission electron microscopy. The 

average size of particles was < 20 nm, which ensures 

sensitivity to the surface region of the catalyst material 

in the XAS measurements. Assuming that the active 

region for the OER reaction is within a depth of ~5 nm 

from the surface, it can be estimated that ~80% of the 

TFY signal originates from this region. 
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