Welcome to the Department of Solid State Chemistry

Our tool box: the periodic table

The main research areas of the Solid State Chemistry group are related to the design, synthesis, and investigation of new quantum materials with topological properties (1,2) and Heusler compounds (3, 4, 5). We use design rules that enable the finding of materials with properties on demand. Based on the structural and electronic structure relation between semiconductors such as GaAs or HgTe it is possible to design new topological insulators within the class of Heusler compounds XYZ with C1b structure type, semiconductors with additional properties such as superconductivity or magnetism (6). This allows eventually the realization of Majorana fermions and quantum anomalous Hall effect (6). Further examples of our work in topology include: Bernevig and Felser: topological quantum chemistry (1, 2) and new Fermions (7) and the subgroup of chiral Fermions (8, 9); discovery of Weyl fermions (10), in nonmagnetic NbP and TaAs(11, 12, 13, 14) and WP2 (15, 16, 17). The axial gravitational anomaly was identified with co-workers around Gooth in NbP (18). We predicted the magnetic Weyl semimetals in Mn3Ge, Mn3Sn Co2MnGa and Co3Sn2S3 (19, 20, 21, 22) and realized by us as high quality single crystals and proven in collaboration with groups from Princeton, Weizmann and Oxford in Mn3Ge (23), Co3Sn2S2 (22, 24, 25) and Co2MnGa (26, 27).

We have an elegant set of design rules for Heusler compounds (3 - 5) that allow devolopment for many applications including quantum and energy applications. Heusler compounds with X2YZ with L21 and XYZ with C1b structure type – show the same broad variety of properties comparable to the perovskites, including topological insulators (6), Kondo behavior, non-centrosymmetric superconductivity and conventional, tunable magnetic properties (28), non-collinear magnetism (29, 23), semiconductivity, magnetoresistance effects,  Li-ion-conductivity and other physical properties. Examples are the semiconducting Half Heusler compounds for thermoelectric applications (4) and the ferrimagnetic  Mn2YZ Heusler compounds for Skyrmions (30) and spintronic applications (31, 5, 23). These concepts can be transferred to other families of materials such as perovskites and skutterudites.

Talk by Claudia Felser in the Kavli Symposium at the APS March Meeting 2019

Prof. Paul Canfield's, Ames Lab, comment: "The Kavli Symposium, "From Unit Cell to Biological Cell" at the 2019 APS March Meeting was a huge success!  The five invited talks merged seamlessly into an example of the richness and diversity of the physics of materials across vast length scales.  The first lecture, by Professor Claudia Felser, combined legos, donuts, and insightful physics and chemistry to set the perfect tone for the subsequent four talks."


Discovery of new fermions in topological chiral crystals

July 18, 2019

Chiral topology is the new frontier in the field of quantum matter. In the recent study, scientists from the Max Planck Institute for Chemical Physics of Solids in Dresden discovered new fermions beyond the concept of the conventional Weyl, Dirac or ...

Good news for future tech: Exotic "topological" materials are surprisingly common

February 28, 2019

Once thought rare, strangely behaving substances called "topological materials" are in fact quite common, a finding that bodes well for their potential use in future electronics. An international team of researchers has assembled an online catalogue ...

Go to Editor View