Film zum Institut

Jobs

Stellenangebote
  • Keine Stellenangebote vorhanden

Promotion in der IMPRS-CPQM

The International Max Planck Research School for Chemistry and Physics of Quantum Materials offers a highly attractive overall package of PhD level research on materials chemistry and physics.

Learn more on the IMPRS-CPQM webpage.

Workshops/Konferenzen

Vorträge

Willkommen am Max-Planck-Institut für Chemische Physik fester Stoffe

Unsere Mission: Spitzenforschung auf dem Gebiet der Materialwissenschaften - fachübergreifend zwischen Festkörperchemie und Physik der kondensierten Materie.

Chemie und Physik – ein starkes Team!

Unsere Mission: Spitzenforschung auf dem Gebiet der Materialwissenschaften - fachübergreifend zwischen Festkörperchemie und Physik der kondensierten Materie. [mehr]

Press Conference at the Ministry of Science and Technology of Taiwan 4 January 2017 in Taipeh

Announcement of the Max Planck Center with POSTECH and NSRRC/NTCU/NTHU

16. Januar 2017

Press Conference at the Ministry of Science and Technology of Taiwan 4 January 2017 in Taipeh

[mehr]
Verbindungen im MgAgAs-Strukturtyp (Halb-Heusler Phasen) stellen eine wichtige Substanzklasse in den modernen Materialwissenschaften dar. Die Kenntnis aller möglichen Elementkombinationen ist hierbei von elementarer Bedeutung.  Mittels einer wissensbasierten Erweiterung des reinen Hoch-Durchsatz Computerchemie-Verfahrens wurden auf der Basis eines speziell entwickelten chemischen Bindungsmodells bislang unentdeckte Phasen im MgAgAs-Typ vorhergesagt und nachfolgend experimentell verifiziert.

Drum prüfe, wer sich ewig bindet, ob sich eine Bindung findet! (nach F. Schiller)

13. Januar 2017

Verbindungen im MgAgAs-Strukturtyp (Halb-Heusler Phasen) stellen eine wichtige Substanzklasse in den modernen Materialwissenschaften dar. Die Kenntnis aller möglichen Elementkombinationen ist hierbei von elementarer Bedeutung.  Mittels einer wissensbasierten Erweiterung des reinen Hoch-Durchsatz Computerchemie-Verfahrens wurden auf der Basis eines speziell entwickelten chemischen Bindungsmodells bislang unentdeckte Phasen im MgAgAs-Typ vorhergesagt und nachfolgend experimentell verifiziert.

[mehr]
Fe3O4 (magnetite) is one of the most elusive quantum materials as well as one of the most studied transition metal oxide for thin film applications. Yet, despite the tremendous amount of work devoted to preparing magnetite thin films, the enigmatic Verwey transition is in thin films extremely broad and occurs at substantially lower temperatures than that in bulk crystals. Recently, scientists at MPI CPfS have succeeded in growing magnetite thin films which not only have the Verwey transition as sharp as in the bulk, but also show transition temperatures that are substantially higher than the bulk.

Press Release: Fe3O4 thin films: controlling and manipulating an elusive quantum material

12. Dezember 2016

Fe3O4 (magnetite) is one of the most elusive quantum materials as well as one of the most studied transition metal oxide for thin film applications. Yet, despite the tremendous amount of work devoted to preparing magnetite thin films, the enigmatic Verwey transition is in thin films extremely broad and occurs at substantially lower temperatures than that in bulk crystals. Recently, scientists at MPI CPfS have succeeded in growing magnetite thin films which not only have the Verwey transition as sharp as in the bulk, but also show transition temperatures that are substantially higher than the bulk.

[mehr]
SmB6 is predicted to be a candidate material for a topological Kondo insulator. By utilizing scanning tunneling spectroscopy (STS) down to 0.35 K with energy resolution of ~0.5 meV, we determined the electronic fine structure on large, non-reconstructed surfaces. Impurity, magnetic-field and temperature dependent STS spectra revealed bulk and/or surface contributions to the electronic states, and unveiled a new energy scale of >7 K related to a suppressed Kondo effect at the surface of SmB6.

Pressemeldung: When being superficial becomes a virtue

12. Dezember 2016

SmB6 is predicted to be a candidate material for a topological Kondo insulator. By utilizing scanning tunneling spectroscopy (STS) down to 0.35 K with energy resolution of ~0.5 meV, we determined the electronic fine structure on large, non-reconstructed surfaces. Impurity, magnetic-field and temperature dependent STS spectra revealed bulk and/or surface contributions to the electronic states, and unveiled a new energy scale of >7 K related to a suppressed Kondo effect at the surface of SmB6.

[mehr]
URu2Si2 undergoes a mysterious ordering transition at 17 K which challenges theoretical and experimental physicists since more than thirty years. By now is generally understood that the distribution of the uranium electron density plays a key role, however, measuring these has so far not been possible. Recently, scientists from MPI-CPfS, University of Cologne and Van-der-Waals-Zeeman Institute in Amsterdam were able to measure these charge distributions by means of inelastic x-ray scattering. 

Pressemeldung: Hidden order and 5f electron density

23. November 2016

URu2Si2 undergoes a mysterious ordering transition at 17 K which challenges theoretical and experimental physicists since more than thirty years. By now is generally understood that the distribution of the uranium electron density plays a key role, however, measuring these has so far not been possible. Recently, scientists from MPI-CPfS, University of Cologne and Van-der-Waals-Zeeman Institute in Amsterdam were able to measure these charge distributions by means of inelastic x-ray scattering. 

[mehr]
Im Rahmen der Allianz MaxPlanck@TUM wird sie ihre Forschungsgruppe „Physik unkonventioneller Metalle und Supraleiter“ an unserem Institut weiterführen und ist gleichzeitig Professorin an der TU München.

Dr. Elena Hassinger wurde auf eine Tenure Track Professur an die Technische Universität München (TUM) berufen.

23. November 2016

Im Rahmen der Allianz MaxPlanck@TUM wird sie ihre Forschungsgruppe „Physik unkonventioneller Metalle und Supraleiter“ an unserem Institut weiterführen und ist gleichzeitig Professorin an der TU München. [mehr]
The solid state chemistry (SSC) department of MPI-CPfS takes part in the speedCIGS project which its main aims is to speed up the manufacturing process of solar cells based on Cu(In,Ga)Se2 (CIGS). The project is funded by Federal Ministry for Economic Affairs and Energy. MPI-CPfS collaborates in this project by performing computer simulation to support the experimental findings of other partners from industry and research institutes.

MPI-CPfS participates in the speedCIGS project funded by BMWi

17. November 2016

The solid state chemistry (SSC) department of MPI-CPfS takes part in the speedCIGS project which its main aims is to speed up the manufacturing process of solar cells based on Cu(In,Ga)Se2 (CIGS). The project is funded by Federal Ministry for Economic Affairs and Energy. MPI-CPfS collaborates in this project by performing computer simulation to support the experimental findings of other partners from industry and research institutes. [mehr]
 
loading content