Film zum Institut

Jobs

Stellenangebote
  • Keine Stellenangebote vorhanden

Promotion in der IMPRS-CPQM

The International Max Planck Research School for Chemistry and Physics of Quantum Materials offers a highly attractive overall package of PhD level research on materials chemistry and physics.

Learn more on the IMPRS-CPQM webpage.

Workshops/Konferenzen

  • Keine Veranstaltungen

Vorträge

Willkommen am Max-Planck-Institut für Chemische Physik fester Stoffe

pendel
Chemie und Physik – ein starkes Team!

Unsere Mission: Spitzenforschung auf dem Gebiet der Materialwissenschaften - fachübergreifend zwischen Festkörperchemie und Physik der kondensierten Materie. Mehr...

The concept of 'quantum critical point', the zero temperature point of a line of 2nd order phase transitions, is rather modern: It is nowadays strongly investigated mainly in connection with unconventional superconductivity. Recent experimental and theoretical works have shown that some metals show competing ferro- and antiferromagnetic order at very low temperature. This allows for the possibility of multiple critical points and thus, at T=0, for quantum tricritical points.

Quantum Tricritical Points

20. September 2017

The concept of 'quantum critical point', the zero temperature point of a line of 2nd order phase transitions, is rather modern: It is nowadays strongly investigated mainly in connection with unconventional superconductivity. Recent experimental and theoretical works have shown that some metals show competing ferro- and antiferromagnetic order at very low temperature. This allows for the possibility of multiple critical points and thus, at T=0, for quantum tricritical points.

[mehr]
Nach bisheriger Vorstellung haben Phononen in thermischen Isolatoren eine kurze Lebensdauer. Eine Untersuchung der Clathrat-I-Phase Ba7.81Au5.33Ge40.67 mit inelastischer Neutronenstreuung zeigt nun ein völlig anderes Bild.

Neue Einsichten zur Wärmeleitung in Feststoffen

11. September 2017

Nach bisheriger Vorstellung haben Phononen in thermischen Isolatoren eine kurze Lebensdauer. Eine Untersuchung der Clathrat-I-Phase Ba7.81Au5.33Ge40.67 mit inelastischer Neutronenstreuung zeigt nun ein völlig anderes Bild.

[mehr]
Today’s world, rapidly changing because of “big data”, is encapsulated in trillions of tiny magnetic objects – magnetic bits – each of which stores one bit of data in magnetic disk drives.   A group of scientists from the Max Planck Institutes in Halle and Dresden have discovered a new kind of magnetic nano-object in a novel material that could serve as a magnetic bit with cloaking properties to make a magnetic disk drive with no moving parts – a Racetrack Memory – a reality in the near future.

Bit data goes anti-skyrmions

1. September 2017

Today’s world, rapidly changing because of “big data”, is encapsulated in trillions of tiny magnetic objects – magnetic bits – each of which stores one bit of data in magnetic disk drives.   A group of scientists from the Max Planck Institutes in Halle and Dresden have discovered a new kind of magnetic nano-object in a novel material that could serve as a magnetic bit with cloaking properties to make a magnetic disk drive with no moving parts – a Racetrack Memory – a reality in the near future.

[mehr]
The National Natural Science Foundation of China honors Dr. Enke Liu, a Humboldt research fellow of the Alexander von Humboldt Foundation, with the 2017 National Science Fund for Excellent Young Scholars for his great contribution to magnetic phase transitions. This scholarship serves as a substantial bolster to the young talents in China.

Dr. Enke Liu honored with National Science Fund for Excellent Young Scholars

1. September 2017

The National Natural Science Foundation of China honors Dr. Enke Liu, a Humboldt research fellow of the Alexander von Humboldt Foundation, with the 2017 National Science Fund for Excellent Young Scholars for his great contribution to magnetic phase transitions. This scholarship serves as a substantial bolster to the young talents in China.

[mehr]
Die Gruppe “Mikrostrukturierte Quantenmaterie” am MPI-CPfS entwickelt mikroskopische elektrische Leiterbahnen aus kristallinen Quantenmaterialien, um ihre physikalischen Eigenschaften zu verstehen und mögliche Anwendungen in neuartiger Elektronik zu testen. In Zusammenarbeit mit Wissenschaftlern aus den USA ist es gelungen einen seltenen Zustand in einem Mikrochip nachzuweisen, in dem sich Elektronen gemeinsam bewegen. Dieser Zustand wird „elektronische Nematizität“ genannt und tritt in einem geschichteten Metall aus Cer, Rhodium und Indium, CeRhIn5, in hohen Magnetfeldern auf. In der Fachzeitschrift Nature zeigen die Wissenschaftler einen neuen Weg auf, den Zusammenhang zwischen elektronischer Nematizität und Supraleitung zu verstehen. Auch in der Supraleitung bewegen sich Elektronen gemeinsam, und Zusammenhänge zwischen den beiden Phänomenen wurden seit langem vermutet.

Elektronen wählen eine Richtung

22. August 2017

Die Gruppe “Mikrostrukturierte Quantenmaterie” am MPI-CPfS entwickelt mikroskopische elektrische Leiterbahnen aus kristallinen Quantenmaterialien, um ihre physikalischen Eigenschaften zu verstehen und mögliche Anwendungen in neuartiger Elektronik zu testen. In Zusammenarbeit mit Wissenschaftlern aus den USA ist es gelungen einen seltenen Zustand in einem Mikrochip nachzuweisen, in dem sich Elektronen gemeinsam bewegen. Dieser Zustand wird „elektronische Nematizität“ genannt und tritt in einem geschichteten Metall aus Cer, Rhodium und Indium, CeRhIn5, in hohen Magnetfeldern auf. In der Fachzeitschrift Nature zeigen die Wissenschaftler einen neuen Weg auf, den Zusammenhang zwischen elektronischer Nematizität und Supraleitung zu verstehen. Auch in der Supraleitung bewegen sich Elektronen gemeinsam, und Zusammenhänge zwischen den beiden Phänomenen wurden seit langem vermutet.

[mehr]
Wissenschaftler haben einen neuen Weg gefunden um topologische Materialien zu identifizieren - wichtig für zukünftige vielfältige Anwendungen.Ein internationales Team von Wissenschaftlern hat eine neue Methode entwickelt, um aus allen existierenden und noch zu synthetisierenden Materialien die topologisch interessanten Materialien zu identifizieren.  Das Ergebnis, veröffentlicht am 20. Juli in Nature, zeigt, dass topologische Materialien viel häufiger in der Natur auftreten als bisher gedacht.

Topologische Quantenchemie

20. Juli 2017

Wissenschaftler haben einen neuen Weg gefunden um topologische Materialien zu identifizieren - wichtig für zukünftige vielfältige Anwendungen.

Ein internationales Team von Wissenschaftlern hat eine neue Methode entwickelt, um aus allen existierenden und noch zu synthetisierenden Materialien die topologisch interessanten Materialien zu identifizieren.  Das Ergebnis, veröffentlicht am 20. Juli in Nature, zeigt, dass topologische Materialien viel häufiger in der Natur auftreten als bisher gedacht. [mehr]
Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Relativitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

Das Universum in einem Kristall

19. Juli 2017

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Relativitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden. [mehr]
Scientists from the Max Planck Institute for chemical Physics of solids in Dresden discovered a system where a charge order can be continuously tuned to T = 0 by chemical substitution. Surprisingly, they observed a strong enhancement of superconductivity just at the quantum critical point where the charge order disappears. This opens a new window for studying the relation between superconductivity and critical fluctuations at quantum critical points.

Charge density wave quantum critical point with strong enhancement of superconductivity

10. Juli 2017

Scientists from the Max Planck Institute for chemical Physics of solids in Dresden discovered a system where a charge order can be continuously tuned to T = 0 by chemical substitution. Surprisingly, they observed a strong enhancement of superconductivity just at the quantum critical point where the charge order disappears. This opens a new window for studying the relation between superconductivity and critical fluctuations at quantum critical points.

[mehr]
 
loading content