Film zum Institut

Jobs

Stellenangebote

Promotion in der IMPRS-CPQM

The International Max Planck Research School for Chemistry and Physics of Quantum Materials offers a highly attractive overall package of PhD level research on materials chemistry and physics.

Learn more on the IMPRS-CPQM webpage.

Workshops/Konferenzen

Vorträge

Willkommen am Max-Planck-Institut für Chemische Physik fester Stoffe

Unsere Mission: Spitzenforschung auf dem Gebiet der Materialwissenschaften - fachübergreifend zwischen Festkörperchemie und Physik der kondensierten Materie.

Chemie und Physik – ein starkes Team!

Unsere Mission: Spitzenforschung auf dem Gebiet der Materialwissenschaften - fachübergreifend zwischen Festkörperchemie und Physik der kondensierten Materie. [mehr]

Kohlenstoff und Stickstoff sind in elementarer Form weitgehend unreaktiv, daher werden in der organischen Synthese häufig reaktive Verbindungen, wie Ammoniak, zur C–N Bindungsbildung eingesetzt. Überraschenderweise gelang es Wissenschaftler_innen am MPI nun, CCN3– aus den Elementen darzustellen – ein lang gesuchtes quasi organisches Molekülanion. Das Anion ist im Wirtsgerüst des Ba5[TaN4][C2N]-Nitridometallats stabilisiert. Die hohe Reaktivität von CCN3– könnte bei organischen Synthesen hilfreich sein.

Von Graphit und Stickstoff zu CCN3– in nur einem Schritt

22. Februar 2017

Kohlenstoff und Stickstoff sind in elementarer Form weitgehend unreaktiv, daher werden in der organischen Synthese häufig reaktive Verbindungen, wie Ammoniak, zur C–N Bindungsbildung eingesetzt. Überraschenderweise gelang es Wissenschaftler_innen am MPI nun, CCN3– aus den Elementen darzustellen – ein lang gesuchtes quasi organisches Molekülanion. Das Anion ist im Wirtsgerüst des Ba5[TaN4][C2N]-Nitridometallats stabilisiert. Die hohe Reaktivität von CCN3– könnte bei organischen Synthesen hilfreich sein.

[mehr]
Sanjay Singh has been working as a group leader in the Solid State Chemistry department of Prof. Claudia Felser. He has joined as an assistant professor in the School of Materials Science and Technology at the Indian Institute of technology (IIT-BHU), Varanasi, India. He will be actively collaborating with Prof. Claudia Felser and his colleagues in MPI-CPfS.

Sanjay Singh leaving for the School of Materials Science and Technology at the Indian Institute of Technology (IIT-BHU), Varanasi, India

13. Februar 2017

Sanjay Singh has been working as a group leader in the Solid State Chemistry department of Prof. Claudia Felser. He has joined as an assistant professor in the School of Materials Science and Technology at the Indian Institute of technology (IIT-BHU), Varanasi, India. He will be actively collaborating with Prof. Claudia Felser and his colleagues in MPI-CPfS.
Binghai Yan has been working as a group leader in the solid-state chemistry department of Prof. Claudia Felser since 2012. In Feb 2017 he is appointed as an assistant professor in the department of condensed matter physics, Weizmann Institute of Science, Israel. In the new institute, he will continue his theoretical research on emerging topological materials, not least in cooperation with the Felser group.

Binghai Yan leaving for the Weizmann Institute of Science, Israel

10. Februar 2017

Binghai Yan has been working as a group leader in the solid-state chemistry department of Prof. Claudia Felser since 2012. In Feb 2017 he is appointed as an assistant professor in the department of condensed matter physics, Weizmann Institute of Science, Israel. In the new institute, he will continue his theoretical research on emerging topological materials, not least in cooperation with the Felser group.
Emilia Morosan is a professor of Physics and Astronomy, Chemistry, and Materials Science and Nanoengineering at Rice University. Her research focuses on the design and synthesis of new compounds with unconventional electronic and magnetic ground states, with particular interest in superconductivity, local and itinerant electron magnetism, heavy fermions, quantum phase transitions and more.

Alexander von Humboldt fellow Emilia Morosan joins Solid State Chemistry group of MPI CPfS

2. Februar 2017

Emilia Morosan is a professor of Physics and Astronomy, Chemistry, and Materials Science and Nanoengineering at Rice University. Her research focuses on the design and synthesis of new compounds with unconventional electronic and magnetic ground states, with particular interest in superconductivity, local and itinerant electron magnetism, heavy fermions, quantum phase transitions and more. [mehr]
A Weyl semimetal is a topologically non-trivial phase of matter that hosts mass-less Weyl fermions, particles that remained elusive for more than 80 years since their theoretical prediction by the German mathematical physicist Hermann Weyl in 1929, but discovered experimentally only in 2015.

Discovery of tip induced superconductivity in Weyl semimetal

25. Januar 2017

A Weyl semimetal is a topologically non-trivial phase of matter that hosts mass-less Weyl fermions, particles that remained elusive for more than 80 years since their theoretical prediction by the German mathematical physicist Hermann Weyl in 1929, but discovered experimentally only in 2015.

[mehr]
Wenn es gelingt, moderne Materialien gezielt zu manipulieren, können dramatische Änderungen auftreten. Mit uniaxialem Druck ist es uns gelungen, die Topologie der elektronischen Struktur des unkonventionellen Supraleiters Sr2RuO4 zu beeinflussen. Damit einher geht eine Verdoppelung der supraleitenden Sprungtemperatur. Messungen in verschiedenen Magnetfeldern geben Hinweise auf den Charakter der Supraleitung in diesem Material.

Ein unkonventioneller Supraleiter spürt höchste Drücke

20. Januar 2017

Wenn es gelingt, moderne Materialien gezielt zu manipulieren, können dramatische Änderungen auftreten. Mit uniaxialem Druck ist es uns gelungen, die Topologie der elektronischen Struktur des unkonventionellen Supraleiters Sr2RuO4 zu beeinflussen. Damit einher geht eine Verdoppelung der supraleitenden Sprungtemperatur. Messungen in verschiedenen Magnetfeldern geben Hinweise auf den Charakter der Supraleitung in diesem Material.

[mehr]
Scientists from the Max Plank Institute for Chemical Physics of Solids in Dresden have explored the electronic structure of LaBi and have observed the existence of three Dirac cones: two that coexist at the corner and one at the center of its Brillouin zone. Thus, they have unambiguously proven the topological character of LaBi.  

The ever expanding family of topological materials: multiple Dirac cones established in LaBi

18. Januar 2017

Scientists from the Max Plank Institute for Chemical Physics of Solids in Dresden have explored the electronic structure of LaBi and have observed the existence of three Dirac cones: two that coexist at the corner and one at the center of its Brillouin zone. Thus, they have unambiguously proven the topological character of LaBi.  

[mehr]
Press Conference at the Ministry of Science and Technology of Taiwan 4 January 2017 in Taipeh

Announcement of the Max Planck Center with POSTECH and NSRRC/NTCU/NTHU

16. Januar 2017

Press Conference at the Ministry of Science and Technology of Taiwan 4 January 2017 in Taipeh

[mehr]
Verbindungen im MgAgAs-Strukturtyp (Halb-Heusler Phasen) stellen eine wichtige Substanzklasse in den modernen Materialwissenschaften dar. Die Kenntnis aller möglichen Elementkombinationen ist hierbei von elementarer Bedeutung.  Mittels einer wissensbasierten Erweiterung des reinen Hoch-Durchsatz Computerchemie-Verfahrens wurden auf der Basis eines speziell entwickelten chemischen Bindungsmodells bislang unentdeckte Phasen im MgAgAs-Typ vorhergesagt und nachfolgend experimentell verifiziert.

Drum prüfe, wer sich ewig bindet, ob sich eine Bindung findet! (nach F. Schiller)

13. Januar 2017

Verbindungen im MgAgAs-Strukturtyp (Halb-Heusler Phasen) stellen eine wichtige Substanzklasse in den modernen Materialwissenschaften dar. Die Kenntnis aller möglichen Elementkombinationen ist hierbei von elementarer Bedeutung.  Mittels einer wissensbasierten Erweiterung des reinen Hoch-Durchsatz Computerchemie-Verfahrens wurden auf der Basis eines speziell entwickelten chemischen Bindungsmodells bislang unentdeckte Phasen im MgAgAs-Typ vorhergesagt und nachfolgend experimentell verifiziert.

[mehr]
Fe3O4 (magnetite) is one of the most elusive quantum materials as well as one of the most studied transition metal oxide for thin film applications. Yet, despite the tremendous amount of work devoted to preparing magnetite thin films, the enigmatic Verwey transition is in thin films extremely broad and occurs at substantially lower temperatures than that in bulk crystals. Recently, scientists at MPI CPfS have succeeded in growing magnetite thin films which not only have the Verwey transition as sharp as in the bulk, but also show transition temperatures that are substantially higher than the bulk.

Press Release: Fe3O4 thin films: controlling and manipulating an elusive quantum material

12. Dezember 2016

Fe3O4 (magnetite) is one of the most elusive quantum materials as well as one of the most studied transition metal oxide for thin film applications. Yet, despite the tremendous amount of work devoted to preparing magnetite thin films, the enigmatic Verwey transition is in thin films extremely broad and occurs at substantially lower temperatures than that in bulk crystals. Recently, scientists at MPI CPfS have succeeded in growing magnetite thin films which not only have the Verwey transition as sharp as in the bulk, but also show transition temperatures that are substantially higher than the bulk.

[mehr]
SmB6 is predicted to be a candidate material for a topological Kondo insulator. By utilizing scanning tunneling spectroscopy (STS) down to 0.35 K with energy resolution of ~0.5 meV, we determined the electronic fine structure on large, non-reconstructed surfaces. Impurity, magnetic-field and temperature dependent STS spectra revealed bulk and/or surface contributions to the electronic states, and unveiled a new energy scale of >7 K related to a suppressed Kondo effect at the surface of SmB6.

Pressemeldung: When being superficial becomes a virtue

12. Dezember 2016

SmB6 is predicted to be a candidate material for a topological Kondo insulator. By utilizing scanning tunneling spectroscopy (STS) down to 0.35 K with energy resolution of ~0.5 meV, we determined the electronic fine structure on large, non-reconstructed surfaces. Impurity, magnetic-field and temperature dependent STS spectra revealed bulk and/or surface contributions to the electronic states, and unveiled a new energy scale of >7 K related to a suppressed Kondo effect at the surface of SmB6.

[mehr]

News-Archiv

 
loading content