Discovery of Field-Induced Pair Density Wave State in Cuprate High Temperature Superconductors
Superconductors are quantum materials that are perfect transmitters of electricity and electronic information. Although they form the technological basis of solid-state quantum computing, they are also its key limiting factor because conventional superconductors only work at temperatures near -270 oC. This has motivated a worldwide race to try to discover higher temperature superconductors. Materials containing CuO2 crystal layers (cuprates) are, at present, the best candidate for highest temperature superconductivity, operating at approximately -120 oC. But room temperature superconductivity in these compounds appears to be frustrated by the existence of a competing electronic phase, and focus has recently been on identifying and controlling that mysterious second phase.
Superconductivity occurs when electrons form pairs of opposite spin and opposite momentum, and these “Cooper pairs” condense into a homogeneous electronic fluid. However, theory also allows the possibility that these electron pairs crystallize into a “pair density wave” (PDW) state where the density of pairs modulates periodically in space. Intense theoretical interest has emerged in whether such a PDW is the competing phase in cuprates.
To search for evidence of such a PDW state, a team led by Prof. JC Seamus Davis (University of Oxford) and Prof. Andrew P. Mackenzie (Max Planck CPfS, Dresden) with key collaborators Dr. Stephen D. Edkins and Dr. Mohammad Hamidian (Cornell University) and Dr. Kazuhiro Fujita (Brookhaven National Lab.), used high magnetic fields to suppress the homogeneous superconductivity in the cuprate superconductor Bi2Sr2CaCu2O8. They then carried out atomic-scale visualization of the electronic structure of the new field-induced phase. Under these circumstances, modulations in the density of electronic states containing multiple signatures of a PDW state were discovered. The phenomena are in detailed agreement with theoretical predictions for a field-induced PDW state, implying that it is a pair density wave which competes with superconductivity in cuprates. This discovery makes it clear that in order to understand the mechanism behind the enigmatic high temperature superconductivity of the cuprates, this exotic PDW state needs to be taken into account, and therefore opens a new frontier in cuprate research.
Andy Mackenzie / APM