Der Quanten-Hall-Effekt spielt traditionell nur in zweidimensionalen Elektronensystemen eine Rolle. Kürzlich jedoch wurde eine dreidimensionale Version des Quanten-Hall-Effekts im Dirac-Halbmetall ZrTe5 beschrieben. Es wurde vorgeschlagen, dass diese Version aus einer magnetfeldinduzierten Fermi-Oberflächeninstabilität resultiert, die das ursprünglich drei-dimensionale Elektronensystem in einen Stapel von zwei-dimensionalen Elektronensystemen umwandelt. Jetzt haben Wissenschaftler am Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden, an der Technischen Universität Dresden, am Brookhaven National Laboratory in New York, am Helmholtz-Zentrum Dresden-Rossendorf, dem Max-Planck-Institut für Mikrostrukturphysik in Halle und am Würzburg-Dresden Cluster of Excellence ct.qmat zeigen können, dass das Elektronensystem von ZrTe5 entgegen der ursprünglichen Erklärung auch im Magnetfeld drei-dimensional bleibt und, dass die quasi-Quantisierung des Hall Effekts trotzdem direkt mit Quanten-Hall-Physik verknüpft ist.
Spezifischer Hall-Widerstand als Funktion des angelegten Magnetfeldes bei einer Temperatur von 2 K in Einheiten des Planck’schen Wirkungsquantums h, der Elementarladung e und dem Fermiwellenvektor entlang des angelegten Magnetfeldes kF,z. Links oben zeigt eine Skizze der Probe. Rechts unten ist die drei-dimensionale Fermifläche der Elektronen in ZrTe5 dargestellt.
Spezifischer Hall-Widerstand als Funktion des angelegten Magnetfeldes bei einer Temperatur von 2 K in Einheiten des Planck’schen Wirkungsquantums h, der Elementarladung e und dem Fermiwellenvektor entlang des angelegten Magnetfeldes kF,z. Links oben zeigt eine Skizze der Probe. Rechts unten ist die drei-dimensionale Fermifläche der Elektronen in ZrTe5 dargestellt.
Die Erkenntnisse aus der Studie über Quanten-Hall-Physik in der dritten Dimension lassen sich universell auf konventionale Metalle übertragen und versprechen eine einheitliche Erklärung der in der Vergangenheit oft rätselhaften Plateaus, die bei Hall-Messungen in vielen drei-dimensionalen Materialien beobachtet worden sind. Darüber hinaus kann das Konzept direkt angewendet werden, um den zwei-dimensionalen Quanten-Anomalen-Hall-Effekt auf generische drei-dimensionale Magnete zu verallgemeinern.
Congratulations to Claire Donnelly, who was awarded the IEEE Magnetics Society Early Career Award for “For excellent work on developing x-ray techniques for imaging magnetic structures in three dimensions”.
Unser ehemaliger Kollege Dr. Wolfgang Hönle war nicht nur ein Wissenschaftler und als wissenschaftlicher Bauleiter maßgeblich am Aufbau des MPI CPfS beteiligt, sondern er ist auch ein Kunstliebhaber und -sammler par excellence. Teile seiner umfangreichen Sammlung zum Thema „Chemie und Wissenschaft“ sind zurzeit im Weserrenaissance-Museum Schloss…
Dr. Eteri Svanidze und Dr. Uri Vool, beide Forschungsgruppenleiter am Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden, wurden zu TUD Young Investigators ernannt.
Uri Vool hat einen „Starting Grant“, des Europäischen Forschungsrats (ERC) erhalten. Er ist unabhängiger Gruppenleiter am MPI CPfS und wird die Fördergelder nutzen, um neuartige Supraleiter zu erforschen, indem er sie in hybride Quantenschaltungen integriert.
Der IMPRS-CPQM-Student Chia-Chi Yu gewann einen Posterpreis auf der 21. GDCh-Tagung für Anorganische Chemie, Festkörperchemie und Materialforschung in Marburg (27.-28. September 2022).
Maia G. Vergniory, Forscherin in unserer Abteilung Festkörperchemie, wurde kürzlich von der American Physical Society (APS) für ihre Pionierarbeit bei der Entwicklung einer neuen Theorie, der so genannten topologischen Quantenchemie, die die Identifizierung Tausender neuer topologischer Materialien ermöglicht hat, zum APS Fellow gewählt.
Ein Team von Forschern des MPI für Chemische Physik fester Stoffe und des MPI für Struktur und Dynamik der Materie hat in Zusammenarbeit mit Forschern aus der Schweiz und Spanien beobachtet erstmalig schaltbaren chiralen Transport in einem stukturell achiralen Kristall - dem Kagome-Supraleiter CsV3Sb5. Ihre Arbeit wurde in der aktuellen Ausgabe von Nature veröffentlicht.